Bringing AI and machine learning innovations to healthcare (Google I/O ’18)

[음악 재생] 릴리 펭 : 안녕 모두들 내 이름은 릴리 펭이야

나는 의사로서 훈련을하고 있으며 나는 Google 의학에 종사하고있다 잘, Google 인공 지능 건강 관리 팀 저는 제품 매니저입니다 그리고 오늘 우리는 몇 가지 프로젝트에 대해 이야기 할 것입니다 우리 그룹에서 우리가 해왔 던 그래서 처음에는, 당신이 많은 것을 얻을 것이라고 생각합니다

그래서 나는 이것을 너무 많이 지나치지 않을 것입니다 그러나 우리는 깊은 학습을 적용하기 때문에 의료 정보에, 나는 원하는 종류의 조금만 사용되는 몇 가지 용어를 정의하는 것 그러나 다소 불충분하게 정의됩니다 그래서 처음으로, 인공 지능 – 이것은 꽤 광범위한 용어이며 그 거대한 프로젝트를 포함합니다 비인간적 인 지능을 구축한다 기계 학습은 특별한 유형입니다 인공 지능에 대해서, 그것은 더 똑똑해질 수있는 기계를 가르치고 있습니다

그리고 깊은 학습은 특별한 유형입니다 너희들 기계 학습의 아마 꽤 많이 들었고 꽤 많이 들었습니다 우선 무엇보다 깊은 학습이란 무엇입니까? 그래서 인공 신경 네트워크의 현대 환생입니다 실제로 1960 년대에 발명되었습니다 그것은 조직 된 단순한 훈련 가능한 단위의 모음입니다 레이어에서

그리고 그들은 함께 작업하여 복잡한 작업을 해결하거나 모델링합니다 따라서 일반적으로 데이터 세트가 작고 계산이 제한적일 경우, 우리가 1980 년대와 90 년대에 가진 것입니다 일반적으로 다른 접근 방식이 효과적입니다 그러나 더 큰 데이터 세트 및 더 큰 모델 크기 더 많은 컴퓨팅 성능을 제공한다면, 우리는 신경 네트워크 훨씬 더 잘 작동합니다 실제로 두 가지 테이크 아웃이 있습니다

너희들이이 슬라이드에서 나가길 바란다 하나는 깊은 학습 열차 알고리즘입니다 충분한 데이터가 주어지면 매우 정확합니다 두 가지, 깊은 학습이 이것을 할 수 있습니다 기능 공학없이 그리고 그것은 명시 적으로 규칙을 쓰지 않고 의미합니다 그럼 그게 무슨 뜻이야? 글쎄, 전통적인 컴퓨터 비전에서, 우리는 규칙을 쓰는 데 많은 시간을 할애한다

특정 예측 작업을 수행하기 위해 기계가 따라야한다는 것을 의미합니다 길쌈 신경 네트워크 (convolutional neural networks) 우리는 실제로 기능에 거의 시간을 소비하지 않습니다 이러한 규칙을 작성하고 작성합니다 우리가 데이터 준비에 소비하는 대부분의 시간 수치 최적화 및 모델 아키텍처 그래서 나는이 질문을 꽤 많이 받는다

그리고 문제는 얼마나 많은 데이터가 충분한 데이터인지입니다 깊은 신경 네트워크? 일반적으로 더 많은 것이 좋습니다 그러나 특정 시점을 넘어선 수익이 감소하고 있습니다 일반적인 경험 법칙은 클래스 당 약 5,000 개의 긍정적 인 것을 좋아합니다 그러나 중요한 것은 좋은 관련 데이터입니다

쓰레기통에, 쓰레기통 이 모델은 예측하기 위해 무엇을 요구 하는지를 매우 잘 예측합니다 그래서 당신이 기계 학습을 어디에서 생각하는지, 특히 깊은 학습은 가장 큰 영향을 미칠 수 있습니다 실제로 장소에 있습니다 살펴볼 많은 데이터

우리 이사 중 한 명인 Greg Corrado가 최선을 다합니다 깊은 학습은 당신이 해낸 일에 정말 좋습니다 시간, 그리고 10,001 번째 시간에, 당신은 단지 그것의 아플 뿐이에요 더 이상하고 싶지 않아 그래서 이것은 검진에서 건강 관리에 정말 좋습니다

많은 환자를 볼 수있는 응용 프로그램 잠재적으로 정상입니다 전문 기술이 제한되어있는 곳에서도 좋습니다 오른쪽에 그래프가 나타납니다 세계 각국의 방사선과 의사 부족의 부족 그리고 이것은 다른 의학 전문 분야에도 해당됩니다

그러나 방사선과 의사가 여기 있습니다 그리고 우리는 근본적으로 의료 전문 지식의 세계적 부족을 봅니다 그래서 심사 신청 중 하나 우리 그룹이 당뇨병 성 망막증을 앓고 있습니다 더 쉽기 때문에 우리는 이것을 DR이라 부릅니다 당뇨병 성 망막증보다

그리고 예방 가능한 실명의 가장 빠른 성장 원인입니다 당뇨병 환자는 모두 4 억 5 천만 명에 달합니다 1 년에 한 번 상영됩니다 이것은 뒤의 사진을 찍음으로써 이루어진다 특별한 카메라로 눈의 모습을 볼 수 있습니다

그리고 그림은 그 것처럼 조금 생겼습니다 의사가 이런 이미지를 얻을 때 의사가하는 일 질병없이 1에서 5 단계로 등급을 매기 는가, 건강하고, 질병을 번식시키고, 그것은 마지막 단계입니다 그리고 그들이 등급을 매길 때, 때로는 매우 미묘하게 보입니다 결과, 미세 동맥류라고하는 작은 것들 그것은 눈의 혈관에 outpouchings입니다 그리고 그것은 당뇨병이 얼마나 안 좋은지를 나타냅니다

당신의 비전에 영향을 미치고 있습니다 그래서 불행히도 세계의 많은 지역에서, 이 일을하기에 안과 의사가 충분하지 않습니다 그래서 인도에있는 한 파트너와 함께, 또는 실제로 인도에있는 우리의 파트너 몇, 전국에 127,000 명의 안과 의사가 부족합니다 결과적으로 환자의 약 45 % 질병이 감지되기 ​​전에 시력 손실의 일종을 겪는다 네가 회상 한대로이 질병이 완전히 예방할 수있었습니다

다시 한번 이것은 일어나서는 안되는 것입니다 그래서 우리가하기로 결심 한 것은 우리가 파트너가 된 것입니다 인도에 몇 군데 병원을두고, 미국의 선별 서비스 제공 업체입니다 그리고 우리는이 첫 번째 시도에 대해 약 130,000 개의 이미지를 얻었습니다 우리는 54 명의 안과 의사를 고용하고 라벨링 도구를 만들었습니다

그리고 54 명의 안과 전문의는 실제로 이 스케일에서이 이미지의 등급을 매겼는데, DR에서 증식으로 흥미로운 점은 실제로 의사가 이미지를 호출하는 방법에 약간의 변동성이 있습니다 그래서 우리는 실제로 약 880,000 건의 진단을 받았습니다 이 레이블이 지정된 데이터 세트를 사용하여 알려진 콘볼 루션 신경망 이것은 시작이라고합니다

나는 너희들 중 많은 사람들이 그것에 익숙하다고 생각한다 일반적으로 사진 앱을 위해 고양이와 개를 분류하는 데 사용됩니다 또는 다른 검색 애플 리케이션을 위해 그리고 우리는 그저 안저 영상을 재사용했습니다 그래서 우리가 배운 다른 것 우리가이 일을하는 동안 그게 정말 유용했던 동안 이 5 점 진단, 그것은 또한 믿을 수 없을만큼 의사에게 유용하다

이미지 품질과 같은 하우스 키핑 예측에 대한 피드백, 이것이 왼쪽 눈인지 오른쪽 눈인지, 또는 이것이 망막의 어느 부분인지 알 수 있습니다 그래서 우리는 그것을 네트워크에도 추가했습니다 그럼 얼마나 잘하는거야? 이것이 우리 모델의 첫 번째 버전입니다 우리가 2016 년 의학 저널에 발표 한 내용은 제가 믿습니다 여기 왼쪽에는 차트가 있습니다

총계에있는 모형의 성과의 약 10,000 개 이상의 이미지 민감도는 y 축에 있고, 1 마이너스 특이성 x 축에있다 감도는 시간의 백분율입니다 환자가 질병에 걸렸다면 그 모델이 그 질병을 부르고 있었을 때, 맞았습니다 그리고 특이성은 비율입니다

모델에 질병이없는 환자들 또는 의사가 옳았다 그리고 당신은 뭔가를 원한다는 것을 알 수 있습니다 높은 민감도와 높은 특이성을 지니고 있습니다 그리고 위아래로 – 또는 위로 그리고 왼쪽으로 좋다 그리고 차트에서 여기를 볼 수 있습니다

작은 점들이 그 의사들이라고 동일한 세트를 채점하고있었습니다 그래서 우리는 의사와 매우 가까워졌습니다 그리고 이들은 보드 인증을받은 미국의 의사들입니다 그리고 이들은 안과 의사, 일반 안과 의사들입니다 훈련으로

사실 F 점수를 보면 감도와 특이성의 결합 된 척도이며, 우리는 중앙 안과 전문의보다 조금 나아졌습니다 이 특별한 연구에서 그래서 그 이후로 우리는 모델을 향상 시켰습니다 그래서 작년에 약 2016 년 12 월 우리는 일종의 동위에 있었다 일반인들과

그리고 올해는 – 이것은 우리가 발행 한 새로운 논문입니다 우리는 실제로 망막 전문가를 사용했습니다 이미지를 채점하기 위해 그래서 그들은 전문가입니다 우리는 또한 그들이 동의하지 않을 때 논쟁하도록했습니다

진단이 뭔지에 대해서 그리고 우리는 모델을 언제 사용 하는지를 볼 수 있습니다 그 사실을 근거로 모델은 매우 잘 예측했습니다 게다가 올해 우리는 일종의 동위에 있습니다

망막 전문가와 그리고이 가중 카파는 단지 5 수준의 합의 그리고 본질적으로 우리는 안과 의사와 망막 사이의 일종 사실 전문가들 사이에 망막 전문가 우리가 작업 해 왔던 또 다른 일 모델을 개선하는 것을 넘어서 실제로는 네트워크를 설명하려고 애쓰다 그것이 어떻게 예측을하고 있는지 다시 한번, 연극이나 연극을 가져 가라

소비자 세계의 플레이 북에서, 우리는 show me where라는 기술을 사용하기 시작했습니다 그리고 이것은 이미지를 사용하는 곳입니다 실제로 열 화상지도를 생성합니다 관련 픽셀은이 특정 예측을위한 것입니다 그래서 여기 포메라니스트의 그림을 볼 수 있습니다

그리고 히트 맵은 거기에 당신을 보여줍니다 포메 라니아 사람의 얼굴에있는 무언가이다 그것은 Pomeranian-y를 보게합니다 그리고 여기 오른쪽에는 아프간 인의 사냥개가 있습니다 그리고 네트워크는 아프간 인 사냥개를 강조했다

그래서 이와 비슷한 기술을 사용하여, 우리는이를 안저 이미지에 적용했다 우리가 말했지, 어디 있는지 보여줘 이것은 가벼운 질병의 경우입니다 그리고 나는 가벼운 질병이라고 말할 수 있습니다 왜냐하면 – 잘, 그것은 나에게 완전하게 정상적으로 보인다

나는 거기에 어떤 질병이 있다고 말할 수 없다 하지만 고도로 숙련 된 의사라면 미세 동맥류 라 불리는 작은 것을 골라 낼 수있다 녹색 지점이있는 곳 다음은 중등도의 질병 사진입니다 그리고 이것은 당신이 볼 수 있기 때문에 조금 더 나쁩니다

여기 끝에 약간의 출혈 그리고 실제로 나는 신호 할 수 있는지, 하지만 거기에 피가 나옵니다 그리고 열지도 – 히트 맵이 있습니다 출혈을 일으킨다는 것을 알 수 있습니다 그러나이 이미지에는 두 가지 유물이 있습니다

그래서 작은 얼룩처럼 먼지가 있습니다 그리고이 작은 반사가 있습니다 이미지의 중간에 그리고 당신은 그 모델이 근본적으로 그것을 무시합니다 그럼 다음은 뭐니? 우리는 모델을 훈련 시켰습니다

우리는 다소 설명 할 수 있음을 보여주었습니다 우리는 그것이 올바른 일을한다고 생각합니다 무엇 향후 계획? 음, 우리는 실제로 의료 시스템에 이것을 배치해야합니다 우리는 의료 공급자와 제휴하고 있습니다 그리고 회사는이를 환자에게 제공해야합니다

실제로 제게 메가 박사님, 누가 저를 대담하게 말할 것입니까? 이 노력에 대해 좀 더 자세히 설명 할 것입니다 그곳에 그래서 심사 신청서를 제출했습니다 그리고 여기 진단의 응용이 있습니다 우리가 작업하고있는 그래서이 특별한 예에서 우리는 질병에 대해 이야기하고 있습니다

우리는 유방암에 대해 이야기하고 있습니다 그러나 우리는 유방암의 전이에 대해 이야기하고 있습니다 근처 림프절로 따라서 환자가 유방암 진단을 받았을 때 원발성 유방암이 제거되면, 외과의 사는 밖으로 약간 시간을 보낸다 우리가 림프절이라고 부르는 것을 조사 할 수 있도록 유방암이 전이되었는지 아닌지보기 그 노드들에게 그리고 그것은 환자를 어떻게 대하는가에 영향을 미칩니다

이 림프절을 읽는 것은 쉬운 일이 아닙니다 그리고 실제로 그들이 돌아올 때의 생체 검사의 약 24 % 그들을보기 위해, 24 %는 마디 상태의 변화를 가지고 있었다 이는 긍정적 인 경우 부정적인 것으로 읽음을 의미합니다 그리고 그것은 음성적이었고, 긍정적이었습니다 그래서 그것은 정말로 큰 문제입니다

4 분의 1에요 흥미로운 점은 다른 연구 결과에 따르면 무한한 시간을 가진 병리학 자, 실제로 데이터에 압도 당하지 않았다 매우 민감하기 때문에 94 %의 감수성 종양 환자에게 시간 제약을 가하면, 그들의 감수성 – 또는 미안, 공급자에, 병리학 자에게는 감도가 떨어집니다 그리고 사람들은 내려다보기 시작할 것입니다

거의 전이가 없을 수도 있습니다 그래서이 그림에 바로 거기에 작은 전이가 있습니다 그리고 그것은 보통 놓친이 작은 것들입니다 많은 정보가 주어지면 놀랍지도 않습니다 각 슬라이드에 있습니다

따라서 이러한 슬라이드 중 하나가 디지털화 된 경우, 약 10 기가 픽셀입니다 그리고 그것은 말 그대로 건초 더미에있는 바늘입니다 흥미로운 점은 병리학 자들이 실제로 그들이 자신의 모든 시간을 보면서 암의 73 %를 찾는다 슬라이드마다 오진 (false positive)이 발생합니다 그래서 우리는이 작업을 도울 수있는 모델을 교육했습니다

실제로 암 병변의 약 95 %를 찾습니다 슬라이드 당 8 개의 가양 성이 있습니다 그래서 이상적인 시스템은 분명히 하나입니다 모델을 사용하여 매우 민감하지만 매우 구체적입니다 병리학자를 실제로 훑어 보는 것에 의존하는 거짓 긍정 (false positive)과 오탐 (false positive)이라고합니다 그래서 이것은 매우 유망하며 우리는 지금 클리닉에서 유효성 검사를하고 있습니다

독자 연구의 관점에서, 이것이 실제로 어떻게 의사와 상호 작용하는 것은 정말로 중요합니다 그리고 분명히 다른 조직에 응용할 수 있습니다 나는 림프절에 관해 이야기했지만 초기 연구가있었습니다 실제로 이것은 전립선 암에서 효과가 있음을 보여줍니다 글리슨 그레이딩에 대해서도 마찬가지입니다 그래서 이전 예제에서 우리는 말했습니다

얼마나 깊이있는 학습이 매우 정확합니다 그리고 그들은 의사가 이미 만들었던 전화를하는 경향이 있습니다 그러나 의사가 현재하지 않는 것들을 예측하는 것은 어떨까요? 이미징에서 할거야? 그래서 당신이 이야기의 처음부터 기억하고 있듯이, 깊은 학습에 대한 위대한 것들 중 하나 매우 정확한 알고리즘을 훈련시킬 수 있다는 것입니다 명시 적으로 규칙을 작성하지 않아도됩니다 그래서 우리는 완전히 새로운 발견을 할 수 있습니다

그래서 왼쪽 그림은 종이에서 나온 그림입니다 우리가 최근에 출판 한 다양성을 예측하는 훈련 된 심층 학습 모델 의 심혈관 위험 요인 여기에는 나이, 자기보고 섹스, 흡연 상태, 혈압, 일반적으로 의사들 환자의 심장 혈관 위험을 평가하기 위해 지금 고려해보십시오 적절한 치료 권고를하십시오 그래서 우리는 우리가 이러한 요소 중 많은 것을 예측하고, 매우 정확하게, 실제로 5 년 위험을 직접 예측할 수 있습니다

심장 사건의 그래서이 연구는 아주 일찍, 정말 폐활 적이었고, 이 예측을위한 AUC는 07이다 이 숫자가 의미하는 것은 두 장의 그림이 주어지면 심혈관 사건이없는 환자의 사진 그리고 한 환자의 사진은 약 70 % 그 시간의 대부분의 의사들은 약 50 %의 시간을 보냈고, 그것은 무작위 적이기 때문에 – 마치 혼자 망막 이미지를 기반으로하기가 어렵습니다 그렇다면 왜 이것이 흥미로운가? 일반적으로 의사가 시도 할 때 심혈관 질환 위험을 평가하기 위해, 관련된 바늘이 있습니다

그래서 나는 누군가가 혈중 콜레스테롤을 섭취했는지 모른다 상영 전에 밤에 금식하고 혈액 샘플을 가져가 그런 다음 위험을 평가합니다 다시 한번, 저는 이것이 정말로 초기에 있다는 것을 강조하고 싶습니다

그러나 이러한 결과는 아이디어를 뒷받침합니다 우리가 뭔가를 사용할 수 있을지도 몰라 우리가 할 수 없었던 새로운 예측을하기 위해 이미지처럼 전에 만들어라 그리고 이것은 정렬로 수행 될 수 있습니다 비 침습적 인 방식으로

그래서 몇 가지 예를 들어 보았습니다 세 가지 예가 있습니다 얼마나 깊은 학습이 실제로 두 가지 가용성을 증가시킬 수 있는지 건강 관리의 정확성 그리고 내가 원하는 종류의 것들 중 하나 이것이 여기에있는 이유가 여기에 있음을 인정하십시오 TensorFlow는 점점 더 흥미 진진합니다

오픈 소스입니다 일반적인 기계 학습에서 이런 종류의 개방형 표준 어디서나 적용되고 있습니다 그래서 저는 Google에서 한 일의 예를 들었습니다 커뮤니티 전체에서 수행되는 많은 작업이 있습니다 매우 유사한 다른 의료 센터에서

그래서 우리는 무엇에 대해 정말 흥분하고 있습니다 이 기술은 건강 관리 분야에 도움이 될 수 있습니다 그리고 그걸로 Jess Mega를 소개하고 싶습니다 저와 달리, 그녀는 진짜 의사입니다 그리고 그녀는 Verily의 최고 의료 책임자입니다

제시카 메가 : 여기에와 주셔서 감사합니다 그리고 우리를 걷어차 기 위해 릴리에게 감사드립니다 나는 AI와 건강 관리에 대한 흥분을 생각한다 더 커질 수는 없다 들으 셨던 것처럼, 제 이름은 메스 제스입니다

나는 심장 전문의이고, 너무 기쁘다 알파벳 가족의 일부입니다 Verily는 Google과 Google X에서 성장했습니다 그리고 우리는 전적으로 의료 및 생명 과학에 중점을두고 있습니다 우리의 사명은 세계의 건강 정보를 취하는 것입니다

환자가보다 건강한 삶을 누릴 수 있도록 유용하게 만듭니다 그리고 오늘 제가 이야기 할 예제는 당뇨병에 초점을 맞추고 있습니다 릴리가 시작한 대화에 정말로 도움이됩니다 하지만 일시 중지하는 것이 매우 중요하다고 생각합니다 건강 데이터를 광범위하게 생각해보십시오

현재 청중에있는 모든 개인 약 몇 기가 바이트의 건강 데이터가 있습니다 그러나 수년 동안 건강에 관해 생각한다면 유전체학에 관해서 생각해보고, 분자 기술, 이미징, 센서 데이터, 환자보고 데이터, 전자 건강 기록 우리는 엄청난 액수에 대해 이야기하고 있습니다 데이터, 기가 바이트의 데이터 그리고 Verily와 Alphabet에서 우리는 우리가 환자들을 도울 수 있도록이 일에 앞장설 것입니다 우리가 초기에 우리의 노력 중 일부를 집중하고있는 이유 당뇨병에 이것은 긴급한 건강 문제입니다

약 10 명 중 1 명이 당뇨병을 앓고 있습니다 당뇨병에 걸릴 때 시체에서 설탕 포도당을 어떻게 다룰 지 그리고 당신이 prediabetes에 대해서 생각한다면, 누군가 당뇨병에 걸리기 전에 조건, 3 명 중 1 명입니다 오늘 청중의 전체 중앙 섹션이 될 것입니다 이제 몸이 처리 할 때 어떤 일이 발생합니까? 포도당은 다른 방법으로, 당신은 다운 스트림 효과를 가질 수 있습니다

릴리가 당뇨병 성 망막증에 대해 이야기하는 것을 들었습니까? 사람들은 심장, 신장, 말초 신경 병증 이것이 우리가 앞서 나아갈 필요가있는 질병의 유형입니다 그러나 우리는 우리가 다루려고하는 두 가지 주요 쟁점을 가지고 있습니다 첫 번째는 정보 격차입니다 따라서 당뇨병 환자 중 가장 견고한 환자들조차도 – 우리 할아버지는이 중 하나 였어

하루에 네 번씩 혈당을 확인합니다 오늘이 누구인지 모르겠다 어떤 간식을 먹을 수 있습니다 나는 캐러멜 팝콘을 실제로 가지고 있었다 누구든지 그 중 하나가 있었나요? 그래, 대단하다

우리의 생물학과 우리의 포도당은 위아래로 가고 있습니다 그래서 제가 그 순간에 포도당을 검사하지 않으면, 우리는 그 데이터를 포착하지 못했을 것입니다 그래서 우리는 생물학이 항상 일어나고 있다는 것을 압니다 심장병 전문의로 병원에있는 환자를 볼 때, 나는 누군가의 심장 박동수, 혈압, 모든 것을 볼 수있다 이 생체 신호 중 실시간으로 그리고 사람들은 집으로 돌아가지만 생물학은 여전히 ​​일어나고 있습니다

따라서 정보 격차가 있습니다 특히 당뇨병 환자와의 차이 두 번째 쟁점은 의사 결정 갭입니다 1 년에 1 회, 1 년에 2 회, 그러나 매일 건강에 대한 결정이 내려지고 있습니다 그들은 매주, 매일, 매시간 일어나고 있습니다

그리고 우리는 어떻게이 격차를 좁히기로 결정합니까? 진실로 우리는 세 가지 핵심 사명에 집중하고 있습니다 그리고 이것은 거의 모든 프로젝트에 적용될 수 있습니다 우리는 교대하는 법을 생각하고 있습니다 에피소드 및 반응 치료에서 훨씬 예방적인 치료에 이르기까지 다양합니다 그리고 그 일을하고 요점을 이해하기 위해 우리는 실제로 AI의 힘을 사용할 수 있습니다

우리는 세 가지를해야합니다 올바른 데이터를 수집하는 것에 대해 생각해야합니다 그리고 오늘 저는 지속적인 포도당 모니터링에 대해 이야기 할 것입니다 그런 다음이 데이터를 어떻게 구성하여 형식으로되어 있는지 확인하십시오 우리는 환자의 잠금을 해제하고 활성화하여 진정으로 도움을 줄 수 있습니까? 그래서 우리가 당뇨병 분야에서 이것을 행하는 지 여부 오늘 또는 우리의 수술 로봇에 대해 듣게 될 것입니다

이것은 일반적인 전제입니다 생각할 첫 번째 사항은 데이터 수집입니다 그리고 릴리가 쓰레기를 말하면서, 쓰레기가 나옵니다 이해하지 못하면 통찰력을 찾을 수 없습니다 우리가보고있는 것

그리고 절대적으로 혁명적 인 한 가지 매우 작은 생체 적합성에 대해 생각하고있다 전자 제품 따라서 우리는 차세대 감지 기술을 연구하고 있습니다 그리고 여기에서 데모를 볼 수 있습니다 이것이 예를 들어, 매우 작은 연속 포도당 모니터가있는 곳에서 이러한 도구 중 일부를 만들기 위해 협력하고, 이것은보다 매끄러운 통합으로 이어질 것입니다

다시 한번, 당신은 단지 포도당 값이 얼마되지 않습니다 그러나 우리는 당신 몸이 어떻게 취급하고 있는지 이해합니다 설탕, 제 2 형 당뇨병 환자, 보다 지속적인 방식으로 그것은 또한 우리가 인구 수준에서 일어나는 일 그러나 개인적인 차원에서 일어날 수있는 일 특정 음식을 섭취 할 때 그리고 마지막으로 장치 비용을 줄이려고 노력합니다 그래서 우리는 건강을 정말로 민주화 할 수 있습니다

다음 목표는이 모든 데이터를 어떻게 구성 할 것인가입니다 그리고 저는 환자와 의사로서 말할 수 있습니다 사람들이 말할 수있는 것은 데이터가 놀랍고, 쓰나미로 데이터를 압도하지 마십시오 당신은 그것을 조직해야합니다 그래서 우리는 사노피와 파트너십을 맺었습니다

Onduo라는 회사에서 그리고 그 생각은 환자를 그들의 보살핌과 도움의 중심에 당뇨 관리를 단순화합니다 이것은 정말 누군가의 마음에 도착합니다 누가 더 행복하고 건강해질 것인가 그렇다면 실제로 무엇을 의미합니까? 우리가하려는 일은 사람들에게 힘을 실어주는 것입니다 그들의 포도당 제어와 함께

그래서 우리는 미국 당뇨병 협회 권장 포도당 범위를 살펴보십시오 그러면 사람들이 당신에게 보여주는 그래프를 얻습니다 하루의 모습과 시간의 비율 너는 범위 안에있다 다시, 환자 또는 사용자에게 제공 그 데이터는 그들이 결정의 중심이 될 수 있도록 – 마지막으로 Google 피트니스를 통해 단계를 추적합니다 다음 목표는 이해하려고 노력하는 것입니다

포도당이 당신의 활동과식이 요법과 어떻게 조화를 이루고 있는지 여기에는 프롬프트를 표시하는 앱이 있습니다 음식 사진 그리고 이미지 인식을 사용하고 Google의 TensorFlow를 사용하여, 우리는 음식을 식별 할 수 있습니다 그리고 이것이 진정한 개인적 통찰력이있는 곳입니다

진짜가되기 시작하십시오 왜냐하면 당신이 특정 식사를 먹으면, 몸이 어떻게 끝나는 지 이해하는 것이 도움이됩니다 그것과 관련있다 그리고 흥미로운 예비 자료가 있습니다 미생물이 변할 수 있음을 시사한다

내가 바나나에 반응 한 방식, 예를 들면, 그렇지 않으면 응답 할 수 있습니다 그리고 그것은 모두가 중요하기 때문에 중요합니다 우리가 만드는 일반적인 권고 사항이 갑자기 의사로서 누군가 나를 클리닉에서 보러 오면 2 형 당뇨병이 있습니다

여기 당신이해야 할 일들이 있습니다 당신은 당신의 다이어트, 운동, 구두 약을 복용하십시오 인슐린, 운동도 받아야합니다 당신은 당신의 발 의사, 당신의 눈을보아야 만합니다 의사, 주치의, 및 endocrinologist

그리고 그것은 통합 할 것이 많습니다 그래서 우리가하려고하는 것은 쌍입니다 이 모든 정보는 간병과 함께 간단한 방법으로 제공됩니다 이 여행을 돕는 사람입니다 이 정보가 떠오르면 내가 여기서 너에게 보여준 것의 가운데를 들여다 보면 의료지도와 그 사람이 보는 것, 당신은 여러 다른 라인을 볼 수 있습니다

드릴 다운하고 살펴보기를 바랍니다 이것은 데이터 간의 차이점을 보여줍니다 에피소드 식 포도당 예제에서 볼 수 있습니다 또는 지속적인 포도당 모니터로보고있는 것 이 새로운 감지로 가능합니다 그리고 우리가이 연속 포도당을 뚫어 말하며 모니터하고 우리는 일의 클러스터를 봅니다

이것은 하나의 예입니다 우리는 패턴을보기 시작할 것입니다 릴리가 언급했듯이 이것은 유형의 것이 아닙니다 개별 환자, 간병인 또는 의사가 파고 있지만, 여기가 당신은 학습 모델의 힘을 풀기 시작합니다 우리가 볼 수있는 것은 클러스터입니다

다른 아침의 우리는 긍정적 인 연관성을 만들거야 모두가 여기에서 믿을 수 없을만큼 건강하게 먹는다고 Google I / O에서 빨간색 아침의 클러스터가 될 수도 있습니다 하지만 우리는 일상 생활로 돌아가서 스트레스를받습니다 우리는 다른 종류의 음식을 먹고 있습니다

그러나 대신에, 일반적인 조언을하는 대신에, 우리는 다른 모델을 사용하여 지적 할 수 있습니다 뭔가 진행되고있는 것처럼 보입니다 예를 들어 환자 한 명과 수요일 즈음에 군집이 보였다 그래서 수요일에 무슨 일이 일어나고있는거야? 그 사람이 가고 멈추고 있는가? 특정 위치 또는 어쩌면 거기에 있습니다 그날 많은 스트레스

그러나 다시 한번, 일반적인주의를 기울이지 않고, 가장 포괄적 인 방법으로 치료를 시작할 수 있습니다 실용 가능한 예 다시 한번 우리가 말하는 것에 대해 생각해보십시오 데이터 수집, 구성 및 활성화 매우 관련성이 높습니다 이것이 우리가 당뇨병 관리에 관해 생각하는 방식입니다

이것이 바로 AI가 작동하는 방식입니다 우리는 오늘 아침 다른 토론에서 들었습니다 우리는 문제에 대해 생각해 봐야 해 우리는 이러한 도구를 사용하여 실제로 만들 것입니다 차이

그래서 우리가 생각할 수있는 다른 방법은 무엇입니까? 정보 활성화에 대해서? 그리고 릴리에게서 당뇨병 성 망막증 실명의 주요 원인 중 하나입니다 우리가 뛰어난 포도당 관리를하더라도, 말기 장기 손상이 시작될 수도 있습니다 그리고 나는 그 상승 된 포도당을 언급했다 레벨이 결국 안저 및 망막에 영향을 줄 수 있습니다 이제 당뇨병 환자들 심사를 받아야합니다

하지만 이전에 내가 너에게 준 이야기에서 우리가 환자에게 묻는 것의 세탁 목록 당뇨병에 걸린 사람 그래서이 공동 작업으로 우리가하려는 일은 구글과 함께, 어떻게 우리가 실제로 제품을 앞서 생각하고 생각하다 우리가 실현할 수 있도록 엔드 – 투 – 엔드 솔루션에 대해 오늘날 존재하는 어려움을 제거하십시오 이 문제는 상영에 관한 한 그 중 하나이기 때문에 내게 필요한 옵션이며 다른 하나는 검안의와 안과 의사에게 접근 할 수 있습니다

그리고 이것은 미국의 문제입니다 개발 도상국 에서뿐만 아니라 그래서 이것은 단지 문제가 아니라 지역적 문제입니다 이것은 우리가 매우 세계적으로 생각할 때입니다 우리는 해결책에 대해 생각합니다 우리는이 데이터를 일찍이 생각해 보았습니다

우리는 알고리즘을 사용할 수 있고 두 감도 모두를 높일 수 있습니다 당뇨 망막 병증의 진단과 특이도 황반부 종 그리고 이것은 "JAMA"에 게시 된 데이터입니다 릴리가 잘 설명했듯이 그렇다면 우리는 어떻게 생각할 것인가? 이 제품을 만드는 방법에 대해? 알파벳 같은 장소에서 일하는 것의 아름다움 오늘 당신과 같은 파트너와 함께 일하는 것이 우리 모두입니다

생각할 수있는 것, 우리가 해결해야 할 문제가 무엇인지, 알고리즘을 작성하십시오 그러나 우리는 그 때 뒤로 물러 설 필요가있다 보건 분야에서 활동한다는 의미 그리고 생명 과학의 공간에서? 우리는 이미지 획득, 알고리즘, 그 정보를 전달하는 것 의사뿐 아니라 환자에게도 도움이됩니다 우리가하는 일은이 정보를 취하는 것입니다 현재 일부 파트너와 협력하고 있습니다

현재 유망한 파일럿이 있습니다 인도에서와 마찬가지로, 우리는 듣고 싶습니다 이른 피드백 그리고 두 가지 정보가 있습니다 나는 너와 나누고 싶었다

하나는이 초기 관측을보고, 우리는 AI로 더 높은 정확도를보고 있습니다 더 큰 매뉴얼보다 의사로서 중요한 것은 – 방에 다른 의사가 있는지 나는 모른다 하지만 내가 항상 사람들에게 말하는 부분은 건강 관리 제공자를위한 공간이 될 것입니다 이 도구들이하는 일은 단지 우리가 일하는 것을 돕는 것입니다

그래서 때로는 사람들이 나에게 묻습니다 기술과 인공 지능입니다 의사를 대신하거나 의료 제도를 대체 할 것인가? 그리고 제가 생각하기에 그것은 단지 작품을 증대시키는 것입니다 우리는하다 청진기에 대해 생각한다면 – 그래서 저는 심장 전문의이고 청진기입니다

약 200 년 전에 발명되었습니다 우리가하는 일을 대체하지는 않습니다 그것은 단순히 우리가하는 일을 보강합니다 그리고 나는 우리가 계속하는 것과 비슷한 주제를 보게 될 것이라고 생각합니다 더 많은 것을 돌보는 방법에 대해 생각해보십시오

환자에게 효과적인 방법 그래서 여기서 가장 먼저 AI가 더 잘 수행되고 있다는 것입니다 수동 그레이더보다 그리고 두 번째로 생각하는 것입니다 그 환자 기초에 대해서

우리는 어떻게 진료를 진정으로 민주화합니까? 그리고 조종사에게서 다른 격려하는 조각 우리가 시작할 수있는 아이디어였다 알고리즘으로 치료받는 환자의 기반을 증가시킨다 이제 밝혀 졌을 때, 나는 좋아할 것입니다 건강하게 모든 것을하는 것이 정말 쉽다는 것을 말하고 있습니다 간호 및 생명 과학

그러나 그것이 나왔던 것에 따라, 그것은 거대한 마을을 필요로한다 이런 종류의 일을하는 것 그럼 다음은 뭐니? 임상 입양의 경로는 무엇입니까? 그리고 이것은 이것이 대단히 흥미로 웠습니다 많은 재능있는 기술자들과 일하는 의사가 되라 및 엔지니어 우리는 이제 다른 임상 사이트와 파트너가되어야합니다

나는 여기서 언급했다 우리는 또한 FDA, 유럽 ​​및 그 밖의 규제 기관들도 마찬가지입니다 우리가하기로 결정한 진실로 한 가지 FDA 사전 인증이라고 불리는 것에 속하는 것입니다 프로그램 우리는 새로운 기술과 새로운 알고리즘 의료 보험에 가입하는 것이 중요하지만 지금은 그 방법을 알아 내야합니다

둘 다 안전하고 효과적입니다 그리고 저는 Alphabet에서 우리를 자랑스럽게 생각합니다 앞서 나가고 파트너 관계를 유지하십시오 FDA와 같은 단체들과 주의해야 할 두 번째 사항 우리가 진실로 진실로 Google 및 Nikon 및 Optus와 같은 다른 파트너와 함께 이 모든 것들이 모여 든다 진료를 변형시키려는 시도

그러나 나는 이것이 올바르게하면, 당뇨병뿐만 아니라 실제로 큰 기회가 있습니다 건강 정보의 전 세계에서 그것에 대해 생각하는 것은 흥미 롭습니다 내 시간을 대부분 보살 피는 의사로서 병원에있는 환자의 보살핌에 더 많은 접근을 시작하십시오 병원 밖에서? 하지만 우리가 잘한다면 우리가 앞서 나가면이 격차를 좁힐 수 있습니다 더 예방적인 방법을 찾아 낼 수 있습니다

우리는 올바른 정보를 수집 할 수 있습니다 우리는 인프라를 구성하여이를 구성 할 수 있습니다 그리고 가장 중요한 것은 그것을 활성화하는 방법을 알아낼 것입니다 그러나 나는 모두가 여기에서 알고 싶어한다 이것은 우리가 홀로 할 수있는 일이 아닙니다

정말로 우리 모두를 필요로합니다 그리고 Verily, 우리는 Google에, 우리는 Alphabet 여러분 모두와 함께 할 수 있기를 기대합니다 그래서이 여행에서 우리를 도와주세요 이 대화 후에 릴리와 나는 여기있을 것이다 우리는 여러분 모두와 행복하게 대화 할 수 있습니다

I / O에서 시간을내어 주셔서 감사합니다 [음악 재생]