Google Cloud Vision – How to use Google’s Image Recognition Technology on YouTube Thumbnails

안녕하세요, 유타 SEO 닌자에게 다시 오신 것을 환영합니다 내 이름은 트리스 톤과 이번이 처음이라면, 잊지 마시고 사물을 구독하셔야합니다

나는 너와 얘기하고 싶다 오늘은 Google Cloud 비전입니다 이제는 정말 깔끔한 작은 장난감입니다 이 지난 주 동안에 대해 알아 냈고 YouTube 마케팅 및 비디오 SEO 및 그와 같은 것들에 대한 회의 확인을 위해 미리보기 이미지를 스캔하는 방법에 대해 이야기했습니다 YouTube 또는 Google에서 귀하의 도달 범위를 제한하기 위해 잠재적으로 사용할 수있는 것 귀하의 온라인 콘텐츠 및 몇 가지 다른 흥미로운 생각 이것이 사용될 수있는 방법과 나는 많은 사람들이 검색 할 것이라고 생각한다

이 작업을 수행하는 방법에 대한 자습서를 얻으려는 시도가 있었으므로 앞으로 나아갈 것이라고 생각했습니다 함께 작은 비디오를 보여주고 무엇을해야하고 어떻게해야하는지 보여줍니다 정말 빨리 첫번째 물건을 먼저 가지고 가려고합니다 cloudgoogle

com/vision이 페이지 오른쪽으로 이동하게됩니다 여기를 따라 가면 api와 api로 작업을 시작할 수 있습니다 콘솔과이 모든 것들이 우리 대부분이 생각하는 것 이상입니다 실제로 나는 이것을 얻을 수 없었던 것처럼 관리 할 수있게 될 것입니다 아직 일하면서 내가 버킷에 문제가 있다고 말하면서 그걸로, 내가 너희들에게 알릴 것이다

그러나 만일 당신이 여기 조금 아래로 내려 가면 실제로 API를 테스트 할 수 있으므로 시스템을 테스트 할 필요가 없습니다 다른 미친 백엔드 물건에 들어가서 내가 여기에 몇 가지 그림이있어 테스트하고 여러분에게 보여주고 싶고 다른 것들을 그려 볼 수 있습니다 그러고 나서 우리가 그 일을 마치면 나는 너에게 줄 것을 원해 이 아이디어를 통해 우리의 아이디어와 생각을 YouTube 용 웹 사이트 등 모두에 접근하십시오

그래서 시작하고 시작하겠습니다 우리는 셀카를보고 시작할 것입니다 그래서 우리가 먼저 알아 차릴 것입니다 이것은 실제로 얼굴을 인식 할 수 있고 무엇이 같은지 추측하려고 시도한다는 것입니다 감정이 드러나고 있습니다

그리고 여러분이 볼 수 있듯이 저는이 표현에 대해 충분히 표현하지 않았습니다 레이블을 클릭하면 특정 이미지가 표시되어 개인을 표시합니다 그림의 요소들, 예를 들어 얼굴 머리를 볼 수 있습니다 예 여기 저기에 약간의 모서리가있어 실제로 감지 할 수 있습니다

당신은 그것이 클로즈업이라고 말할 수 있습니다 초상화입니다 조금 목이 찢어졌습니다 나는 눈썹있어 내가 가진 사람의 얼굴이야

큰 이마 그래서 우리는 그 모든 정보를 바로 볼 수 있습니다 우리는 웹에 갈 수 있습니다 이것이 무엇을 할지는 일반적으로 공통적 인 기본 키워드를 보여줄 것입니다 이 특정 이미지 또는 유사한 이미지에 사용되므로 예를 들어 눈썹 사진을 찾을 수 있습니다 아래로 스크롤하면 페이지를 찾을 수 있습니다

이미지가 일치하여 해당 이미지가있는 사이트가 여기에 있습니다 부분적으로 매치 된 이미지는 다음과 같은 그림이 될 것입니다 이것과 비슷한데 나는 내 자매 중 한 명처럼 보이지 않는다 그 형제를 제외한 모든 형제 자매들이 빨간 머리이므로 나는 내 네가 재산에 가면 이름이 내가 아는 어떤 것을 탐지하고있다 당신이 지배적 인 색깔을 좋아하는 것을 보여줍니다

JSON을 착각하지 않으면 이것이 실제로 기차를 좋아하는 용도로 사용됩니다 인공 지능은 나중에 우리가 다른 백에 들어가는 것이 아닙니다 그것에 확실한 백분율 그러나 나는 그것이 그것이 인 것을 위해 꽤 확신한다 안전 검색 정보는 실제로 꽤 재미 있습니다 Google에서 가끔씩 검색을하는 것처럼 익숙합니다

저장된 검색 설정을 해제할지 묻는 콘텐츠를 차단합니다 잠재적으로 성인용 콘텐츠를 알기 위해 해당 설정을 조정하십시오 그래서이 도구가 무엇을 할 것인가? 그들은 또한 그것을보고 시도하고 추측 할 수 있습니다 여기에 잠재적으로 안전한 수색에 해당 할만한 것이 있습니다 예를 들어 필터가 너무 희박하기는하지만 저는 두 가지 포인트가 있습니다

경주는 하나가 아니라 1 ~ 5 점으로 매우 높지는 않습니다 어른이되면 스푸핑 일 수있는 약간의 기회가 있으며 당신이 내가 약간 경미한 YouTuber 인 것을 알기 때문에 그것은 너무나도 멋질 수 있습니다 나는 당신이 팝업이 무엇인지보기를 원한다면 그것을 염두에 두라 이 비디오를하기 위해 무엇을 검색해야 할지를 알아 내야합니다 내 아내와 문제가 생겼어

나는이 이미지와 함께 여기까지 갔다 우리는이 이미지가 화가 났는지 아닌지 알게 될 것입니다 다시 우리는 우리의 다른 레이블을 볼 수 있습니다 그래, 속옷 핑크색 수영복 복부 근육 트렁크 등등의 몇 가지 다른 예가 있습니다 인터넷을 통해 그래서 당신은 부분적으로 일치하는 이미지를 얻고 싶습니다 똑같은 것을 물어보십시오

방금 다시 속성이있는 밈으로 바뀌 었습니다 우리의 원색 비율에 대해 이야기 한 다음 안전한 검색으로 가면 소프트웨어는 여기에 성인용 콘텐츠가 있지만별로 많지 않다는 것을 알 수 있습니다 분명히 모든 것이 덮여 있기 때문에 완전히 필터링해야합니다 그러나 racy가 racy 일 가능성이 높기 때문에 이걸 사용한다면 youtube 미리보기 이미지가 있으면 동영상이 아주 좋은 기회입니다 제한 모드로 설정되어 있으면 도달 범위가 넓어지지 않습니다

내가 생각한 또 다른 예가 정말로 흥미 롭다 네가 그 녀석을 본 후에 나는 여기 강아지의 그림을 끌어와 비키니 입니 다 그러면 우리는이 그림을 빠르게보고 스캔 할 것입니다 그것이 말하는 것은 그것이 매우 진실한 doglike 포유류 다라고 말한다

개는 시베리안 허스키라고도 할 수 있습니다 허스키 썰매 개 허스키 알래스카 개 알래스카 부츠 Canadian Eskimo Dogs 그리고 나서 우리는 할 수있다 또한 그것이 강아지 인 것을 본 다음, 그것이 말한 또 다른 부분이 있습니다 여기 미니어처 시베리아 허스키 스에 간다 75 % 그게 바로이 그림이 무엇인지 그리고 그것이 올바른지 확률 미니어처 시베리안 허스키 우리는 온라인으로 볼 수 있고 이것의 다른 예를 찾을 수있다 그것이 Pinterest에있는 이미지를 참조하십시오 그리고 다른 장소의 전체 잔뜩 여기에 있습니다 검색에 사용되는 키워드는 모두 유용합니다

깨끗하고 썸네일로 사용할 수있는 아주 좋은 그림이 될 수 있습니다 당신의 비디오가 시베리안 허스키 즈에 관한 것이라면, 내가 어떻게 당신이 그것을 보게하고 싶었 을까? 일부는 일했고 밖으로 나가고 놀 수 있었지만 몇 가지가 있습니다 우리가이 큰 것 중 하나에 사용할 수 있다고 생각하는 흥미로운 것들 Google을 볼 때 Google을 살펴볼 때 현장을 바라 보았습니다 YouTube 동영상에서 볼 수있는 관련성 특정 주제 또는 특정 키워드와 관련된 것이 있다면 우리 웹 사이트가 있다면 조금 더 높은 순위에 올거야 최적화 및 해당 웹 사이트는 검색 용어의 순위를 알기에 적절합니다

백 링크가있는 관련 웹 사이트에서 오는 백 링크가있는 경우 더 높습니다 나는 우리가 할 수 있다고 생각하는 당신의 순위에 대해 더 강해지고 더 많은 가치를 가질 것입니다 잠재적으로 이것과 관련이 있습니다 내가 생각하기에이 아이디어는 우리가 웹 사이트 순위를 조금 높이고 싶다면 온라인으로 홍보하고 싶었습니다 조금 더 나은 또는 우리의 YouTube 임대 조금 나는 이미 우리가 선택한 것에 조금 더주의를 기울 였다고 생각한다

우리가 와서 그 이미지를 먼저 스캔해서 그것들은 웹 사이트의 내용과 관련이 있다고 생각합니다 Google이 가고 있다고 생각합니다 저것을 볼 수 있고 나는 그것이 우리가 조금 움직이는 것을 도울 것이라고 생각합니다 조금 더 많이 검색 할 수 있기 때문에 검색에서 조금 더 높습니다 우리가 목표로 삼고있는 검색어와의 관련성 정말로 중요하고 또 다시 우리는 웹에서 여기를 볼 때 우리가 볼 수있는 앵커 텍스트 alt 텍스트를 볼 수있는 부상 키워드 이 이미지와 관련이 있으므로 잠재적으로이 이미지를 이러한 검색어에 대한 참조를 다시 한 번 볼 수 있습니다

재미있는 것은 그들이 일어난 일 중 하나였습니다 컨퍼런스는 소프트웨어가 조금 더 빨라지 자마자 YouTube 동영상에 조금 더 효과적으로 사용할 수 있습니다 뿐만 아니라 동영상의 각 프레임을 스캔하고 당신은 어른 콘텐츠 또는 어쩌면 반드시 그렇지 않은 무언가를 알고 있습니다 동영상의 콘텐츠와 관련이있는 키워드는 귀하가 순위를 매기려고 시도하면 잠재적으로 순위를 높이거나 상하게 할 수 있습니다 거기 또는 당신의 범위 그래서 나는 그것이 정말로 흥미 롭다는 것을 다시 생각했다

당신이 정말로 빨리 들어가서 어떻게 찾을 수 있는지 보여주기 위해서 실제로 사이트의이 부분과 그 밖의 모든 것을 찾기 위해 약간 그걸 가지고 놀아 라 네가 정보를 찾았 으면 좋겠다 만약 당신이 의견을 나에게 알려주지 않았다면 아직 구독 중이므로 다음과 같은 동영상을 더보고 싶습니다 정말로 쉽고 정말 쉽고 적어도 지금은 무료입니다 그래서 그게 나를 위해있을거야 내 이름은 유타에서 Triston이다 SEO Ninja, 좋은 하루 되세요

그리고 다음 비디오에서 너희들을 볼거야 안녕

Leverage AI on the Cloud to Transform Your Business (Next Rewind ’18)

CASSIE KOZYRKOV : 다음 2018 년에 300 회 이상의 세션이 있으며, 너는 그들 모두에게 다가 갈 수 없다는 것은 이해할 만하다 그래서 당신이 클라우드를 활용하지 않았다면 귀하의 비즈니스를 변화시키고, 계속 지켜봐주십시오

왜냐하면 여기에 되감기가 있기 때문입니다 [음악 재생] 기계 학습은 알고리즘 접근법입니다 데이터로 반복적 인 결정을 내리는 것 시작하기 전에 모든 구성 요소가 있는지 확인하십시오 배울 데이터, 확인; 기계 학습에 대한 액세스 알고리즘, 확인; 반복적 인 결정을 자동화하려는 욕구 – 우리는 정말로 여기 반복을 말하고 있습니다

10 가지의 결정이 아니라 10,000이나 100 억에 가깝습니다 검사 큰 이야기에서 나온 큰 아이디어를 요약 해 봅시다 첫째, ML을 사용하여 여러 문제를 해결할 수 있습니다

오늘 규칙을 작성 사실, 그것을 적용 할 수있는 기회를 찾을 수있는 좋은 방법입니다 귀하의 비즈니스에서 규칙을 찾는 것입니다 예 : Google 검색에서 검색어 완성 는 손으로 만든 규칙의 진짜 얽힘이었습니다 그것에 기계 학습을 적용하는 것은 우리의 가장 큰 부스트를 가져 왔습니다

2 년 넘게 품질 순위를 매겼습니다 둘째, 기계 학습은 응용 프로그램을 개인화하십시오 ML은 손수 만든 규칙보다 잘 확장되기 때문에 기존 논리 위에 모델을 레이어 할 수 있으며, 당신은 이제 또한 주요 사용자와 다른 사람들을 기쁘게 할 수 있습니다 분견대 자, 물론,이 모든 것을 확인하는 것은 데이터입니다

ML을 규칙 기반 프로세스로 전환하는 것으로 생각할 수 있습니다 그것의 머리에 모델 또는 규칙으로 시작하는 대신, 그것을 뒤집어서 데이터로 시작하십시오 셋째, 기대를 지닌 설계 시스템 내년에는 더 많은 데이터를 얻을 수 있습니다 너의 세계는 정적이 아니기 때문에 너는 기대해야한다

데이터가 커지게됩니다 그리고 더 많은 데이터가 이기기 때문에 이것은 좋은 일입니다 그러나 이것이 당신을 두는 때 무엇이 ​​일어나는가? 엑사 바이트 또는 페타 바이트 영역에서? 예를 들어, 깊은 학습은 잘 작동합니다 큰 데이터 세트 선형 적으로 오류율을 떨어 뜨리려면, 데이터를 기하 급수적으로 늘려야합니다

저기서의 로그 스케일입니다 나는 예측을 좋아한다 당신이 깊은 학습에 있다면, 나는 예측한다 당신의 미래에 많은 데이터 여기에 제안이 있습니다

모든 개인적인 시간을 소비하지 마십시오 큰 데이터 인프라에서 대신 서버리스 방식을 사용하십시오 그래서 당신은 실제로 당신을 데려 오는 것에 당신의 노력을 기울일 수 있습니다 가장 가치있는 것 인프라가 아닌 코드 측면에서 생각해보십시오

우리를 네 번째 아이디어로 이끌어줍니다 인프라를 잊어 버릴 수있는 플랫폼 사용 훌륭한 사전 제작 된 모델을 제공합니다 다양한 ML 시나리오에 대한 유연성을 찾으십시오 그럼 깊은 학습을 다시 살펴 봅시다 최첨단 머신을 수행하는 데 필요한 컴퓨팅 성능 지난 6 년간 학습은 천만 번 증가했습니다

천만 번이나 당신이 최첨단에 있고 싶다면, 효율적이고 비용 효율적인 ML이 필요합니다 환경 점점 더 많은 데이터를 처리하기 위해 분산 될 필요가 있습니다 점점 더 많은 계산을 처리하기 위해 더 나은 하드웨어가 필요할 것입니다

Google Cloud는 이상적인 환경을 제공합니다 하드웨어의 분산 처리 용 당신의 필요에 맞게 환상적인 서버 관리 방식을 제공합니다 훌륭한 사전 빌드 된 모델로 ML을 실행하려면, 그래서 처음부터 모든 것을 만들 필요가 없습니다 네가 원치 않으면

제 말은, 왜 재발견 할 필요가없는 바퀴를 재발견하는 겁니까, 그렇죠? 이 이야기를 요약하면, 다채로운 사용 사례를 생략했습니다 그 아이디어를 실제로 현실로 가져옵니다 영화 추천 시스템, 사기로부터 기계 학습 학습 탐지, 고객 서비스, 사물의 인터넷, 자동차 경매, 게임 등 가득 찬 이야기를보고 싶다면, 설명의 링크를 확인하십시오 아래를 클릭하고 Cloud YouTube에 가입하는 것을 잊지 마십시오

채널을 통해 다음 되감기 콘텐츠를 더 많이 얻을 수 있습니다 지켜봐 줘서 고마워 [음악 재생]

Machine Learning on Google Cloud Platform (Cloud Next ’18)

[음악 재생] 안녕, 여러분 모두들 안녕

관객 : 안녕하세요 크리스 클리브런 : 좋아요 제 이름은 크리스 클레 ​​반입니다 Justin Lawyer와 함께 우리는 제품 관리자입니다 Google 클라우드에서 우리는 당신과 대화 할 것입니다

GCP에서 기계 학습에 관한 정보 그래서 저는 매우 투명한 사람입니다 나는 그것을 무엇보다 명확하게 할 것입니다 나는 당신의 테이크 아웃이이 이야기에서 나온 것이기를 바랍니다 하나, 당신이 정말로 흥분하기를 바랍니다

기계 학습으로 할 수 있습니다 둘, 자신감을 갖기를 바래 조직에서 기계를 성공적으로 구현할 수 있는지 확인하십시오 Google Cloud로 학습하십시오 셋째, Google AI의 관심사를 통해이를 신뢰하십시오

우리는 당신의 ML을위한 올바른 플랫폼이자 파트너입니다 워크로드 세 번의 테이크 아웃 이요 우리는 당신이 그 테이크 아웃을 얻으려고 이야기 할 것입니다 우리가 그것을 파고 들기 전에, 나는 단지 당신에게 감사의 말을 전하고 싶다

우리 모두는 바쁜 삶을 사는 데 제한된 시간을 가지고 있습니다 Google Cloud, 다음 컨퍼런스, 이 세션 고마워 ML이 당신을 위해 무엇을 할 수 있습니까? 그것은 놀라운 것들을 많이 할 수 있습니다 조직에 경쟁이있는 경우, 그들이 ML을보고 있다고 보장합니다

자, ML은 반드시 정신병자를 발명하는 것이 아닙니다 교통 수단을 이용하는 경우 순간 이동을 어떻게 만들지가 아닙니다 기존 비즈니스 및 프로세스를 이용하는 것입니다 다시 상상하고 재발견 할 수있는 능력 너 오늘하고있는 일 ML에는 세 가지 종류의 큰 영역이 있습니다

통찰력을 얻는 데 도움이 될 수있는 도움이 될 수 있습니다 또는 고객이 제품 혁신에 도움을 줄 수 있습니다 자동화에 도움이됩니다 진짜 자동화를 빨리 봅시다 자가 운전 트럭과 자동차 – 모두가하는 사업 교통과 택시로 오늘하고있다

그것을 더 빠르고, 저렴하게, 더 쉽고, 더 안전하게 만들어줍니다 혁신을 살펴 보겠습니다 우리 고객 중 한 명이, 디즈니, 우리의 제품 AutoML을 사용하여 혁신 그들의 소매 서비스 사용자 경험을 원했습니다 그들이 찾고있는 제품을 정말 빨리 찾을 수 있습니다

그래서 그들은 웹 인터페이스를 사용하여 커스텀 모델을 만들었습니다 전문 지식이 필요하지 않습니다 그리고 지금 그들의 수색 경험에서, 당신은 "해변에 미키 마우스"를 입력 할 수 있습니다 해변과 관련된 모든 제품을 찾습니다 그리고 미키 마우스 – 정말로 멋지다, 정말로 쉽다

그리고 통찰력 – 당신이 비행기라고 가정 해 봅시다 제조사, 항공기, 그리고 당신은 정말로 안전에 관심이 있습니다 IoT 덕분에 엄청난 양의 데이터가 있습니다 이 악기들이하고있는 것 그리고 그 데이터를 수집한다면 어떻게 처리할까요? 그리고 아마 당신이 그걸 예측할 수 있다면 어떨까요? 비행기 정비 전에 필요한 정비 부품 정기적으로? 안전에 대한 통찰력, 그래서 무엇에 대해 흥분을 느끼는지 귀하의 조직이 할 수 있습니다

그래서 손을 보여줍니다 누가 여기에, 그들의 조직, 찾고 있습니다 오늘 기계 학습으로? 큰 손을 한 번 더 보여줍니다 여기 누가 기계 학습이 무엇인지 이해한다고 생각합니까? 네가 반 정도는 마지막 질문 – 누가 기계 학습 모델인지 알 수 있습니까? 네, 대부분

그래서 이것에 대해서 간단히 만질 것입니다 기계 학습은 데이터에 관한 것이며 데이터를 가져 오는 것입니다 통찰력과 행동 거기에는 모든 종류의 데이터가 있습니다 이미지, 구조화되지 않은 텍스트, 관계형 데이터베이스, 시퀀스 정보

그리고 기계 학습은 그 데이터를 취하는 것입니다 다양한 종류의 ML 알고리즘을 취하고, 그 알고리즘을 통해 그 데이터를 통과 거대한 인프라 세트가 필요합니다 그리고 그 데이터를 통과하면, 기계 학습 모델이 생성됩니다 그리고이 모델은 점점 좋아집니다 더 많은 데이터, 더 나은 알고리즘, 더 많은 인프라

그리고이 모델을 사용하여 통찰력, 자동화, 혁신 그래서 우리 모두는이 서비스, 웹 검색을 알고 있습니다 Google은 AI 회사이자 데이터 회사입니다 18 년 동안 세계 데이터 수집, 모든 사람이 접근 가능하고 사용 가능하게 만듭니다 우리는이 분야에서 많은 전문 지식을 보유하고 있습니다

대규모 데이터 센터, 인공 지능 전문가, 데이터 전문가 Google Cloud가 제공하는 전문 기술은 ML에 너에게 이것은 우리가 내부적으로 가지고있는 것에 대한 멋진 작은 이야기입니다 ML을 성공적으로 구현했습니다 Brein이라는 내부 AI 팀은 ML 모델을 만듭니다

알고리즘을 통해 수많은 데이터를 가져와 대규모 인프라 스트럭처를 통과시켜야합니다 ML 모델을 만들 수 있습니다 하지만 Google의 모든 소프트웨어 개발자는 아닙니다 ML 전문가입니다 우리가 한 일은 우리의 소프트웨어를 둘러 보았습니다

개발자를 교육하고 기존 모델로 ML을 구현하는 방법 그래서이 그래프가 보여주는 것은 소스 코드의 개수입니다 개발자가 Brain의 ML 모델을 사용하는 저장소 AI를 내부 서비스에 성공적으로 구현하기 위해, 외부 제품 Google은 이러한 유형의 개념을 Google Cloud에 도입합니다 오른쪽에는 여러 제품이 있습니다

ML과 AI를 통합했습니다 나는 그들 모두에 대해 이야기하지 않을 것이다 나는 두 가지에 대해서 이야기 할 것이다 내 즐겨 찾기 그래서 저는 아빠입니다, 저는 세 명의 아이들이 있습니다

그리고 저는 아이들의 디지털 사진을 많이 찍었습니다 어리석은 금액, 아마도 총 10 만개 그리고 저는이 Mac을 가지고 있었고 하드 드라이브가 몇 개 있었는데, 저장 용량이 걱정되어 Google 포토가 생겼습니다 무료 무제한 저장 글쎄, 잘됐다

값이 싸고 확장 가능하며 물건을 뒷받침하는 것에 대해 걱정해야합니다 그러나 실제로, 혁신은 검색 기능이었습니다 얼굴 인식 기능이 있으며 우리 애들이 누군지 알고 있습니다 내 얼굴 사진을 클릭 할 수 있습니다 내 전화에서 해변이나 보트 같은 단어를 입력하고, 이제 10 만 장의 사진을 찍습니다

내가 찾고있는 정확한 사진을 찾습니다 과거에는 20 분이 걸렸을 것입니다 ML은 혁신적이며 그렇게 할 수도 있습니다 조직의 규모에 관계없이 기술 직원 유형에는 ML을 구현하는 여러 가지 방법이 있습니다 그리고 우리는 두 가지 방법에 대해 이야기 할 것입니다

첫 번째 방법은 ML 모델을 사용하는 것입니다 ML 전문가가 될 필요는 없습니다 소프트웨어 개발자 일 필요가 있습니다 또는 귀하의 조직이 REST API를 사용하는 프로그래밍 언어 사용하기 쉽다

CXO 나 결정을 내리는 경영자라면, 프로젝트에 자금을 지원합니까? 높은 품질의 모델을 만드는 것은 매우 위험합니다 소프트웨어 개발자에게 API를 사용하게한다 그것을 구현하고, 정말로 빨리 시작하십시오 그리고 다른 길은 커스텀 모델을 만드는 것입니다 어쩌면 당신은 당신의 공간에서 도메인 전문가입니다

또는 데이터에 액세스 할 수 있고 원하는 자신 만의 ML 모델을 만들 수 있습니다 그래서 우리는 전문가들을위한 많은 도구들을 가지고 있습니다 빠르고 저렴한 ML 처리를 위해 그리고 여기가 저스틴에게 넘겨 줄 것입니다 그리고 그는 이것들에 대해 조금 이야기 할 것입니다

자세한 세부 사항 크리스틴 고마워 고마워, 크리스 그래서와 주셔서 대단히 감사합니다 오늘, 우리는 이야기 할 것입니다

당신의 직업에 맞는 도구를 어떻게 찾을 수 있습니까? 당신의 분야에서 전문가로서? 그래서 우선, 크리스가 언급 한 것처럼, Google은 많은 기계 학습 모델을 만들었습니다 특정 애플리케이션이 Google 애플리케이션을 강화할 수 있습니다 그래서 우리는 당신 주위에 REST API를 포장했습니다 소비하기 위해 우리는 이것을 지각 API라고 부릅니다

그들은 일반적으로 인간의 인식 주위에 있기 때문에 사용자가 애플리케이션과 상호 작용하는 방식 이렇게 빨리 다음 슬라이드로 이동하면, 이 API에는 크게 세 가지 범주가 있습니다 하나는 사이트에 관한 것이고 다른 하나는 대화에 관한 것입니다 세 번째 것은 언어에 관한 것입니다 아마 이들 각각을 걸을 것이 중요하다고 생각합니다 정말 신속하게 당신이 일종의 즉석에서 이해할 수 있습니다

코딩 없이도 얻을 수있는 기능 REST API를 사용하는 것 외에는 귀하의 응용 프로그램에 그래서 우선, 시력을 위해, 당신이 이미지를 가지고 있다고 말하면서, 그 이미지의 내용을 이해하고 싶습니다 자동으로 이미지를 Vision API에 전달하면 그 이미지 안에있는 물체가 무엇인지를 이해할 수 있습니다 자동으로, 그리고 당신은 얼굴이 어디 있는지 알아낼 수 있습니다, 다른 사람들에게 알릴 수 있습니다 동영상 이해 API의 경우 동영상, 장면 전환, 다른 대상을 알려줄 수 있습니다

해당 비디오 내에서 기본적으로 검색하고 찾을 수 있습니다 동영상 내 또는 동영상 전체에서 원하는 내용 여러 동영상을 전달하는 경우 OCR – 종종 사람들은 스캔 한 문서를 가지고 있습니다 그리고 무엇을 이해해야합니까? 도크는 그 문서에 있습니다 어쩌면 그것은 PDF 파일 일 수도 있고 GIF 파일 일 수도 있습니다

너는 할 수 있어야한다 GIF, JPEG가 아닙니다 API에 전달할 수 있습니다 그런 다음 자동으로 감지합니다 그 문서의 단어들은 무엇입니까? 그 원시 텍스트를 나중에 줄 수 있습니다

또는 장면의 이미지를 가지고 있거나, 벽에 징후가있다 그것은 당신에게 그 사인에 관한 텍스트를 줄 것입니다 따라서 OCR은 일상적인 응용 프로그램에서 정말 편리합니다 성인용 콘텐츠는 사실 실제로 하나입니다 정말로 중요합니다

사용자가 제출 한 콘텐츠를 얻으십시오 당신은 그 이미지에 무엇이 있는지 모릅니다 당신은 당신이 아닌지 확인해야합니다 사용자에게 부적절한 이미지를 제공합니다 따라서 성인용 콘텐츠 검색은 정말 쉬운 방법입니다

그 이미지에서 무슨 일이 일어나고 있는지 감지 할 수있게 당신이 걸러 내야 만하는 것이죠 귀하의 사용자에게? Conversation 클래스의 API의 경우 – 오디오를 텍스트로 – 스트리밍 오디오가있을 수 있습니다 그 다음 파일은 당신이 무엇을 말하고 있는지 알아 내야합니다 그런 다음 그 사건을 베끼고 그것을 당신에게줍니다 그것은 비디오, 사람들과의 실제 대화, 텔레비젼 쇼를 위해 무엇이든간에

그 반대도 가능합니다 텍스트 문자열이있을 수 있습니다 당신의 사용자에게 읽어 줄 필요가있다 자, 문자열을 응용 프로그램에 전달합니다 그러면 합성 음성을 만듭니다

그런 다음 사용자에게 알릴 수 있습니다 채팅 봇은 사용자와 소통 할 수있는 방법입니다 채팅에서 직접 원하는 상호 작용을 프로그래밍 할 수 있습니다 사용자와 대화하고 특정 종류의 대화를 프로그래밍 할 수 있습니다 계속해서 고객 서비스 전화로 도움을 받으십시오

또는 그런 것들 언어 API에서, 자유 형식의 텍스트를 가지고 있다면 정말 어렵습니다 정말 도대체 무슨 소리 야? 우리는 밖으로지도하고 무엇의 맥락을 알아낼 것입니다 말하자면, 문장의 데이터 구조를 찾아 내고, 당신이 알아낼 수 있도록 말의 부분을주세요 좋아, 명사 란 무엇인가? 동사는 무엇인가? 이것들의 관계는 무엇입니까? 그리고 나서, 당신은 지능적인 것을 할 수 있습니다

그 구조와 감정 분석은 함께 전송되는 분위기는 무엇인가요? 그 단어들로? 우리가 가진 것은 우리는 많은 좋은 성공을 시도했습니다

예를 들어 고객 서비스의 정서를 모니터하는 것 이메일이나 채팅, 물건 나가기 관리자에게 에스컬레이션 할 수 있음 그래서 물건들이 나선형으로 나오지 않도록 할 수 있습니다 제어 또는 무엇인가가 공격적인지 이해할 필요가 있다면, 또는 평온한, 또는 행복한, 당신은 어떻게 분류하고 있는지 확인합니까 고객이 평점을 매기는 것이 적절하다면 서비스 콜, 그런 것들? 번역에서는 자동으로 번역하는 좋은 방법입니다 한 언어에서 다른 언어로 예를 들어 다음에 대해 조금 이야기하겠습니다

예를 들어, 당신이 게임 개발자라고 말하면, 당신은 온라인 커뮤니티를 가지고 있습니다 하지만 그들은 전세계에서 온다 다른 언어로 말하기 당신은 그들이 서로 이야기 할 수 있기를 원합니다 실시간 채팅에서 기본적으로 할 수 있습니다

다른 언어로 번역 할 수있는 능력이 있어야합니다 따라서 Translate API를 사용하면 정말 쉽습니다 또는 인바운드 고객 서비스를받을 수 있습니다 이메일을 보내고 언어로 번역 할 수 있습니다 고객 서비스 담당자가 고객이 이해할 수 있도록 그러면 고객에게 응답 할 수있는 적절한 문서를 찾을 수 있습니다

이 API에 대한 좋은 점은 기본적으로 REST API 만 있으면됩니다 기본적으로 코드 스 니펫을 제공합니다 당신은 그것을 당신의 앱으로 팝니다 당신이 정말로 바꾸어야 할 유일한 것 데이터를 가리키는 키와 URI입니다 그리고 짜잔, 떨어져

그것보다 더 간단해질 수는 없습니다 다음 질문은 성능이 어떻습니까? 실제로 얼마나 효과가 있습니까? 그들은 일반적인 사용 사례에 정말 좋습니다 경우에 따라 문제가있을 수 있습니다 Google이 결코 다루지 않았던 또는 상황을 처리해야 할 수도 있습니다 Google이 다루어야 할 것보다 훨씬 더 자세하게 설명합니다

예를 들어 Google은 볼트와 못의 차이를 쉽게 알 수 있습니다 하지만 당신이 제조업 자라고 가정 해 봅시다 생산 라인에 2,000 개의 볼트가 있습니다 귀하의 부품에 대한 차이점을 어떻게 알 수 있습니까? 글쎄, 우리가 가능하게 한 것은 Cloud AutoML 그래서 당신은 라벨이 붙은 모든 부품의 이미지를 제공 할 수 있습니다 그리고 우리는 그들을 구별하지 못할 수도 있습니다

라벨을주지 않으면 그런 다음 모델을 교육합니다 그런 다음 REST API 엔드 포인트를 얻을 수 있습니다 귀하의 응용 프로그램에서 사용하십시오 그래서 좋은 점은 사용하기가 정말 쉽다는 것입니다

그리고 당신은 기계 학습을 알 필요가 없습니다 우리는 당신을 위해 그것을한다 그런 다음 응용 프로그램에서 사용할 수 있습니다 그래서 다음 질문은, 음, 이것이 얼마나 효과가 있습니까? 실제로 모든 오픈 소스보다 효과적입니다 밖에있는 모델

따라서 훌륭한 실적을 올릴 수 있습니다 그리고 사용하기가 정말 쉽습니다 그래서 정말 도움이되었습니다 그래서 실제로 ML을 사용하는 방법 중 하나입니다 또 다른 방법은 데이터 과학자가 있다고 가정 해 봅시다

내 자신의 데이터를 가지고 있기 때문에 내 모델을 만들고 싶습니다 그리고 그것은 내가 다룰 필요가있는 커스텀 문제입니다 음,이 작업에는 두 가지 다른 방법이 있습니다 하나는 클라우드 관리 서비스를 사용하고 있습니다 그리고 이것들은 당신이하지 않는 서비스입니다

인프라를 다루고 싶다 우리는 당신을 위해 그것을 다룰 것입니다 그렇게하면 컴퓨터 학습 프로세스에 집중할 수 있습니다 그래서 우리는 Dataproc과 Dataflow를 가지고 있습니다 그래서 당신은 당신의 전처리를 다룰 수 있습니다

Dataproc은 본질적으로 Hadoop 및 Spark이지만 관리, 또는 Dataflow가 백엔드에서 Beam을 사용하고 있습니다 프로세싱을 처리하는 관점에서 머신은, ML 엔진 또는 기계 학습 엔진, 인프라 스트럭처를 자동으로 가동시킬 수 있습니다 그리고 우리는 그걸 좀 알아볼 것입니다 당신이 끝나면 그것을 찢어 버려라 따라서 인프라 스트럭처가 사라집니다

데이터 과학자들로부터 모든 최상위 프레임 워크를 지원합니다 그리고 우리는 Datalab을 가지고 있습니다 데이터 탐색을 쉽게 할 수 있습니다 먼저 Datalab에 대해서, 얼마나 많은 사람들이 실제로 Jupyter Notebook을 사용했습니다 주피터 노트북에 대해 알고 있습니까? 약 3 분의 1 정도가 될 것입니다

나머지 사람들은 그렇게 이해합니다 주피터 노트는 근본적으로 데이터를 가리킬 수있는 앱 귀하의 데이터를 분석 할 수있는 코드를 제공하십시오

데이터를 시각화하고, 반환하고, 즉시보고, 얻을 수 있습니다 몇 가지 피드백을받은 다음 반복하여 반복하고, 그것을 계속 추가하십시오 전체 노트북을 재생할 수 있으며, 당신은 그저 특정 스 니펫을 연주 할 수 있습니다 직장 동료와 공유 할 수 있습니다 그래서 그것은 정말로 탐험하고 시각화하는 훌륭한 방법입니다

및 프로토 타입 그래서 환상적인 도구입니다 Datalab에 대한 좋은 점은 모든 다른 클라우드 서비스에 연결하도록 미리 구성 BigQuery와 ML 엔진 등이 있습니다 따라서 클라우드에서 벗어나기 만하면됩니다 랩톱에서 로컬로 사용할 수도 있습니다

기계 학습 엔진은 정말 좋은 방법입니다 임의의 데이터 사이트에서 분산 학습 수행 모든 상위 프레임 워크를 사용하여 데이터를 처리 할 수 ​​있습니다 그리고 다시, 그것은 관리 서비스입니다 따라서 모델과 데이터를 가리키고, 그리고 당신은 단지 그것을 회전시킵니다 그것은 당신을위한 모든 분산 훈련을 담당합니다

당신은 그것에 대해 걱정할 필요가 없으며 종료됩니다 모든 것을 찢어서 사용하는 것에 대해서만 비용을 지불합니다 그래서 이것을하는 것이 정말 효율적인 방법입니다 실수로 해당 VM을 켜두는 것에 대해 걱정할 필요가 없습니다 한달 전에 고지를 청구하고 청구서를받을 때

이것에 대한 또 다른 좋은 점은 배치 예측 및 온라인 예측도 수행합니다 기본적으로 이러한 일괄 예측 작업을 실행할 수 있습니다 정말 효율적입니다 또는 온라인 예측을 위해 REST API 끝점을 만듭니다 당신의 모델을 위해 당신을 위해 그리고 어떤 양으로도 봉사하십시오

당신은 당신이 가지고있는 많은 수의 앱을 필요로합니다 정말 쉬운 방법으로 앱을 관리 할 수있는 좋은 방법입니다 다른 하나는 데이터 과학자들이 종종 모델 최적화를하지 않는다 그것은 일종의 고통이기 때문에 모든 다른 매개 변수를 변경해야합니다

데이터 세트에 적합한 구성을 찾으십시오 글쎄, 우리는 그것을 ML 엔진에 내장했다 그래서 그것은 실제로 그것을 당신을 위해 간단하게 만듭니다 매개 변수 만 입력하면됩니다 최적의 모델을 찾으십시오

그래서 좋은 모델을 찾기보다는, 실제로 데이터 세트에 가장 적합한 것을 찾는 것입니다 따라서 모델 실적을 향상시킬 수 있습니다 관리 관점에서 모든 것을 하나로 모으는 것은, 우리는 전체 ML의 모든 단계에 대해 다른 서비스를 가지고 있습니다 애플리케이션에 대해 처리해야하는 라이프 사이클 우리는 섭취 측, 전처리 측, 저장 및 탐색 및 실험, 시각화 측면, 모델 교육 및 제공, Data Studio를 사용하여 보고서를 만들 수 있습니다

그것 모두는 우리의 관리 서비스에, 당신은 인프라를 다룰 필요가 없습니다 모든 호출기를 관리하는 SRE를 보유 할 필요는 없습니다 이렇게하는 다른 방법은 직접 해보는 것입니다 자신 만의 솔루션을 선보일 수 있습니다 사실 몇 가지 매우 유효한 이유가 있습니다

왜 일부 고객은 이것을 원할 것입니다 당신은 연구자 일 수도 있고 당신 일 수도 있습니다 스택의 모든 부분을 변경할 수 있기를 원한다 원한다면, 당신은 매우 맞춤화 된 파이프 라인을 가지고 있을지도 모릅니다 또는 당신이 최첨단을 원할 수 있습니다

오픈 소스 소프트웨어는 당신이 원하는 시점에 펑크 난다 여러 가지 이유가 있습니다 너는 그걸 원할지도 모른다 그게 전부입니다 우리는 그런 사용자를 좋아합니다

하이브리드 구현도 가능합니다 어떤 것들은 클라우드에 있고 어떤 것들은 온 – 프레미엄입니다 매우 일반적인 사용 사례입니다 우리는 그것을지지하고자합니다 그래서 직접 해보고 그것을 배포 할 방법이 있습니다

정말 중요합니다 따라서 우리와 똑같은 인프라 이전에 관리되고 있던 동일한 종류의 오픈 소스 플랫폼을 자동으로 롤백 할 수 있습니다 자신의 인프라에서 너는 그것을 관리한다 그리고 당신은 똑같은 하드웨어를 갖게됩니다

다른 솔루션에 전력을 공급합니다 그래서 우리는 얻는 것이 정말 쉽습니다 깊은 학습으로 시작되었습니다 깊은 학습은 정말 이륙하고 있습니다 복잡한 데이터에서 통찰력을 찾는 정말 좋은 방법입니다

세트 또한 인증 및 최적화 된 VM 이미지를 제공합니다 GCE에서 일하기 상자에서 꺼내면 Jupyter Notebook을 얻을 수 있습니다 모든 하드웨어에 액세스 할 수 있습니다

크리스가 잠시 후에 얘기 할 것입니다 그리고 가능한 최상의 결과를 얻을 수 있도록 구성되었습니다 따라서 클릭 한 번으로이 항목을 배포 할 수 있습니다 원하는 기계에 접근하여 접근하기 당신이 원하는 모든 액셀레이터에게 즉각적으로 갈 준비가되었습니다

우리는 약속에 대해 언급했다 Google이 오픈 소스 커뮤니티에 미친 영향 Kubeflow는 제가 좋아하는 오픈 소스 프로젝트입니다 지난 가을에 Kubernetes에서 시작되었습니다 특정 ML 작업을위한 마이크로 서비스를 만들 수 있어야한다

분산 형 교육 또는 분산 형 당신이 원하는 곳마다 다른 종류의 모델을 제공하고, 그것이 GCP에 있든 또는 온 – 프레스에 있든 상관 없습니다 따라서이 컨테이너를 배포하는 데 매우 휴대 가능한 방법입니다 당신이 원하는 곳이라면 그런 식으로 배포 할 수 있습니다 일관된 GCP 또는 온 – 리소스 일치에 대해 걱정할 필요가 없습니다

Kubernetes가 그것을 처리하기 때문에 이 모든 것을 다룰 수있는 쿠버 넷 고유의 방식입니다 그리고 다시 CPU, GPU 및 TPU에서 작동하도록 구성되었습니다 GCE에 온 – 프레미스 (On-prem), 내부적으로 가지고있는 모든 것에 액세스 할 수 있습니다 그렇다면 GCE에 배포하면 어떻게 될지 모르겠습니다

GKE 클러스터를 생성하고, 그것은 GCP의 관리 Kuvernnetes 클러스터입니다 그러면 JupyterHub 노트북을 스핀 업할 수 있습니다 TensorFlow 교육 서비스 또는 기타 프레임 워크를 시작하십시오 너는 넣고 싶었고 똑같은 일을했다 당신의 TensorFlow 서빙을 위해

모든 사용자가 공유 저장소에 액세스 할 수 있습니다 GCP에서 Kubernetes에게 자연스럽게 따라서 실제로 할 수있는 좋은 방법입니다 이것은 매우 휴대용 방식으로 그런 다음 전체 컨테이너를 원하는 위치에 배치 할 수 있습니다 그리고 그것은 환상적인 해결책입니다

그래서 지금, 나는 시간을 보낼 것입니다 Chris에게 하드웨어에 대해 이야기 할 것입니다 크리스 클리브 : 감사합니다, 저스틴 테이크 어웨이로 돌아가서, ML에 흥미를 느끼고, Google 클라우드에 ML을 구현할 수 있다고 확신하면서 Google의 인공 지능 (AI) 포커스는 우리를 귀하의 ML에 적합한 파트너로 만들어줍니다 워크로드

정말 빨리 이야기 해 봅시다 단지 이러한 것들을 되풀이하기 위해서입니다 개발자이고 ML을 구현하려는 경우, ML 전문가가 될 필요는 없습니다 API 모델을 사용하십시오 위험을 낮추십시오

사전 훈련 된 ML 모델이 마음에 들지 않는 경우 또는 사용자 정의 무언가를해야합니다 AutoML과 함께 웹 브라우저를 사용하여 사용자 정의 ML 모델을 작성하십시오 놀라운, 슈퍼 간단합니다 그리고 데이터 전문가 또는 기계 학습 과학자 인 경우, 또는 도메인 전문가가 작업 부하에 적합한 도구를 제공합니다 게다가

Google 클라우드에 ML을 성공적으로 구현할 수 있습니다 그러나 컴퓨팅 및 인프라에 대해 간단히 이야기 해 봅시다 ML과의 관계 최근 AI 개선 및 발전의 80 % 더 많은 이용 가능한 컴퓨팅 성능에 기인 한 것입니다 그러나 최근의 TensorFlow 이벤트에서, 설문 조사에 따르면 사람들이 접근 할 수 없다는 것을 인정합니다 ML 연구를 위해 충분히 계산할 수 있습니다

그것은 분명한 문제입니다 이제 수십 년 전으로 돌아 가자 왜냐하면 우리 모두 우리가 서있는 ML에서 일하는이 방에서 거인의 어깨에 신경망과 ML의 작동 방식에 대한 개념, 수십 년이 지났습니다 인간의 두뇌를보고, 어떻게 뉴런이 서로 연결되어 있는지, 그들이 정보를 전달하는 방법 한 뉴런에서 다른 뉴런으로, 그것은 오래된 개념입니다

하지만 최근의 구현입니다 대규모 데이터 센터 및 하드웨어 가속기 우리가이 큰 신경 네트워크를 만들 수있게 해줬습니다 ML의 발전 인프라가 중요합니다 그리고 그것이 중요한 이유는, 당신이 어떤 길로 가든 상관없이 – Google ML 모델을 사용하여 맞춤 모델 만들기 – 그것을 지탱하고있는 인프라입니다

우리 모델에서는 이미 데이터를 가져 왔습니다 훌륭한 알고리즘을 통과 시켰습니다 이 인프라, 대규모, 축구 규모의 현장 데이터 센터 이 모델들을 더 좋고 더 좋게 만드십시오 그리고 우리는 계속 그렇게 할 것입니다 Google Cloud를 사용하면 그 같은 규모로, 너와 그것을 할 수있는 것과 똑같은 힘 알맞게

GCP에 관한 새로운 ML 고객 중 한 명 OpenAI이고 대규모에 대해 이야기합니다 그들은 관리되지 않는 길로 갔다 그들은 도메인 전문가이고, 그들은 AI 사고 리더입니다 그들은 비영리 단체입니다 AI로 혁신하고 개방적이고 안전하게 만들기 위해 노력하고 있습니다

그들은 10 만개 이상의 프로세서를 사용합니다 보강 학습을 할 수 있습니다 수천 개의 GPU를 사용하여 기계 학습을하고 있습니다 혁신을 가능하게하는 것은 규모에 대한 접근입니다 그 (것)들을 위해 그것을 제공하고있는 Google Cloud입니다

하드웨어 가속기는 매우 중요합니다 하드웨어 혁신뿐입니다 CPU가 있으면 Skylake를 사용할 수 있습니다 그러나 ML 작업 부하의 경우 분산 된 교육의 경우 커다란 교육 일자리가 생기면 마비 된 계산 능력이 필요합니다 따라서 우리는 역사적으로 2017 년 2 월 이후로, 우리는 세 개의 NVIDIA GPU 모델 인 K80, P100, V100, 고성능, 패스 스루 PCI입니다

V100을 사용하면 NVLink 상호 연결이 가능하며, ML 워크로드에 아주 좋습니다 우리가 조금 다른 것보다 우리의 경쟁 업체는 맞춤 VM을 제공하는 방식을 사용합니다 CPU 사용량, 메모리 사용량, 기타 GPU 유형, 보유하고있는 GPU 수, 원하는 VM 수, 네트워크 연결 스토리지를 사용하거나 고속 디스크를 원할 경우 특정 작업 부하에 대한 I / O, 서버 내 SSD 연결, 그리고 당신이 원하는 것을 지불하십시오 또는 병목 현상이있는 경우 그 중 하나를 조정하십시오 우리의 다른 경쟁 업체 중 일부는 유연성을 제공하지 않습니다

그래서 돈을 저축하려고합니다 ML 작업이 더 빨리 진행될 것입니다 사실은 이번 주에는 새로운 P4 GPU를 출시했습니다 일주일 후에 나올거야 ML 추론 워크로드에 유용합니다

따라서 우리는 파트너 인 NVIDIA와 계속 협력 할 것입니다 새로운 GPU를 시작하십시오 그래서 우리는 거기서 멈추지 않습니다 AI에 초점을 맞추면 TPU가 생깁니다 우리는 Cloud v2 TPU를 작년에 만들었습니다

이것은 기계 학습을 위해 의도적으로 제작 된 ASIC입니다 그리고 오늘, 우리는 몇 가지 새로운 발표를했습니다 v3이 나오고, 빠르고 저렴한 ML 작업 부하 TPU 포드가 있습니다 TPU 포드는 일련의 TPU입니다

빠른 네트워크로 연결됩니다 다시 한번, 구글의 AI는 인프라를 구축하는 데 중점을두고 있습니다 우리는이 ML 모델을 더 빨리 교육하고 있습니다 우리는 또한 당신에게 그것을 제공하고 있습니다 우리는 당신의 ML을위한 올바른 파트너라고 믿어야합니다

워크로드 저축은 많은 돈입니다 많은 회사에 크고 큰 거래 스탠포드에 예산이있는 조교수가 있습니다 ML에서 몇 가지 연구를 수행합니다

그리고 그는 고정되어 있습니다 – 그가 할 수있는 일은 너무 많아 따라서 관리되지 않는 경로의 윈 – 윈 제품 – 선점 형 VM, 선점 형 GPU 및 TPU가 있습니다 때로는 여분의 용량이 있습니다 또한 교육 및 추론과 같은 ML 배치 워크로드, 우리는 GPU와 TPUs의 70 % 할인을 제공하고 오늘 아침에 발표했습니다 TPUs의 가격을 인하했습니다

그래서 지금,이 연구원은 우리의 여분의 수용력을 사용할 수 있습니다, 약간의 비용 절감, 배치 워크로드 실행 모든 사용 사례에 해당하는 것은 아닙니다 보장되지 않습니다 항상 거기있는 것은 아닙니다 하지만 연구를하고 있다면 필요한 일이나 큰 조직을해라 배치 작업 부하가 한 번씩 적은 비용으로 더 많은 혁신을 할 수있는 좋은 방법입니다

ML에서는 데이터가 정말로 중요합니다 Google은 훌륭한 광섬유 네트워크, 훌륭한 인터넷 서비스를 제공합니다 사이 따라서 데이터를 큰 단위로 이동하는 경우, 우리는 그것을 처리했습니다 실시간으로 들어오는 대규모 데이터 흐름이 다양한 출처 – 우리는 전 세계에 구름 위치를 가지고 있습니다

일부 데이터를 우리에게 발송해야하는 경우, 우리는 당신이 대량으로 출하 할 수있는 가전기구를 가지고 있습니다 그것은 단순한 계산이 아니라 훌륭한 인공 지능 서비스입니다 그것은 네트워크입니다 보안입니다 그것은 거기에 내장 된 모든 것입니다

그래서 우리는 많은 인공 지능 서비스에 대해 이야기했습니다 우리는 당신에게 개요와 소개를주었습니다 우리는 ML이 불가능 발명에 관한 것이 아니라는 것에 대해 이야기했습니다 그것은 재상영과 재발생에 관한 것입니다 너 오늘하고있는 일

현재 14,000 명이 넘는 고객이 GCP에서 ML을하고 있습니다 오픈과 하이브리드에 중점을두고, 및 멀티 클라우드 작업 부하, 하드웨어에 중점을 둠, 우리가 발표하는 우리의 새로운 서비스, 그리고 언급 한 기조 연설, 새로운 AutoML 서비스, 고품질 API – 네가 어떻게하고 싶은지 상관 없다 당신이 할 수 있다는 것에 흥분을 느껴야합니다 당신은 당신이 성공적으로 그것을 할 수 있다고 확신해야합니다 Google은 귀하에게 적합한 파트너입니다

더 배우고, 시작하고, 얻을 수있는 여러 가지 방법이 있습니다 세워짐 내가 특별히 말하고자하는 것은 내가 개인적으로 Kaggle이 사용되었습니다 Kaggle은 ML 대회 서비스 및 커뮤니티입니다 나는 ML을 배울 때, 내가 뭘하는지 몰랐다

그리고 이미지 인식 경쟁이있었습니다 운전자가 도로에주의를 기울이거나 또는 산만 한 느낌 그래서 커뮤니티에 가입하여 ML 도전에 합류했습니다 TensorFlow를 사용하는 방법에 대한 많은 리소스가있었습니다 및 데이터를 사전 처리하는 방법

그리고 Google은 Kaggle을 사용하여 전 세계 사람들을 돕고 있습니다 ML을 배우십시오 그리고 너도 그걸 쓸 수있어 또는 데이터 세트가 많은 조직의 경우, 당신은 경쟁을 시작할 수 있고 세계의 ML 전문가를 가질 수 있습니다 너를 위해 ML을해라

방법에 대한 자료가 많이 있습니다 이러한 서비스에 대해 알아보십시오 Google Cloud 고객이 아닌 경우 무료 크레딧이 제공됩니다 이미 그래서 그 점에 대해 감사 드리고 싶습니다

우리 시간은 거의 다됐다 우리는 몇 가지 질의 응답을 할 것입니다 양쪽에 2 개의 마이크 그리고 몇 가지 질문을하십시오 고마워요

[박수 갈채] [음악 재생]

Leverage AI on the Cloud to Transform Your Business (Cloud Next ’18)

[음악 재생] 발리파파 레이크 만 : 안녕하세요 다음에 오신 것을 환영합니다

클라우드에서 인공 지능을 활용하는 방법에 대해 이야기 할 것입니다 그래서 당신은 당신의 사업을 변형시킬 수 있습니다 나는 Valliappa Lakshmanan입니다 모두가 나를 락이라고 부릅니다 그리고이 이야기는 수십 명의 고객과 수년에 걸쳐 이야기했다

기본적으로 매우 간단한 질문에 대답하는 측면에서 알았어, 나는 AI에 대한 과대 선전을 듣고있어 하지만 실제로 어디에서 사용합니까? 어떤 종류의 유스 케이스가 떠오르지? 그리고 일반적으로 이것에 대한 대답은, 너는 그들에게 빨래 목록을 보여 준다 그것을 사용한 많은 사람들 그리고 내가 여기서하려고 노력한 것은 그걸 조금 뒤로 물러서 라

원리들, 당신이 보는 것들의 종류들, 매우 넓은 지역 그리고 우리는 기본적으로 그것을 몇 가지 관점에서 볼 수 있습니다 한 가지 방법은 Google 제품에서 확인하십시오 그리고 이것들을 어떻게 보는지에 대해서도 이야기 할 것입니다 고객의 유스 케이스를 그래서 제가 AI에 대해 이야기 할 때, 그리고 우리 AI를들을 때, 당신은 아마 Google Photos와 같은 것을 생각할 것입니다

스마트 답장과 같은 것들을 생각해보십시오 이것들은 믿기지가 않을 정도로 매력적입니다 이미지 모델과 시퀀스 모델에 대해 듣게됩니다 당신이 기술자라면, 당신은 길쌈 신경 네트워크 (convolutional neural networks)와 반복적 인 신경 (neurural neural)에 대해 생각해보십시오 네트워크 및 LSTM 등이 있습니다

그러나 AI를 사용하는 방법에 대해 이야기 할 때, 나는 그 모든 버즈에 대해 잊어 버릴 것을 권합니다 궁극적으로, 대부분의 회사에서 가치를 창출하기 때문에 구조화 된 데이터에 대한 기계 학습, 데이터웨어 하우스에있는 데이터, 구글에서도 그리고 이것은 우리가 한 일입니다 왜냐하면 당신이 할 수 있기 때문에 할 수 있어요 전체 Google 코드베이스를 통과하십시오 모든 모델을보고 어떤 종류의 여백을 볼 수 있습니다 사람들이 사용하고 있습니다

MLP는 다중 레이어 퍼셉트론입니다 본질적으로 표준 신경망입니다 그 안에는 아무 것도 없으며 단지 몇 개의 레이어가 있습니다 그것은 Google의 모든 모델 중 60 %입니다 그리고 이것은 당신이 가지고있는 모델의 종류입니다

단순한 숫자 및 범주 형 데이터가있는 경우, 그냥 구조화 된 데이터 LSTM은 여러분이 시계열 데이터 또는 모델 종류가있는 경우 사용 텍스트 데이터가있는 경우에 사용하는 번역, 텍스트 요약 스마트 응답은 LSTM 모델의 예입니다 이는 Google의 전체 모델 중 30 %에 해당합니다 그래서 모든 매력적인 이미지 모델 우리가 듣는 내용, 모든 튜토리얼이 말한 내용, 모두가 말하려는 슬라이드를 꼈다

이것은 당신이 AI로 할 수있는 것입니다, 그것은 5 % 모델의 그래서 당신이 내가 말할 때 무엇에 집중합니까? 내 사업에서 인공 지능을 사용하고 싶습니까? 구조화 된 데이터 이것이 기억해야 할 첫 번째 사항입니다 그 값은 실제로 데이터에서 오는 것입니다 데이터웨어 하우스에있는 것입니다

그렇다면 우리는 어떻게 AI를 위해 구조화 된 데이터를 사용하고, 버즈에 대해 다시 말하면, 우리는 인공 지능에 대해 이야기하고 기계 학습에 관해 이야기합니다 그리고 기계 학습은 오늘날 작동하는 AI의 일부입니다 다시 우리가 뭘할지 이야기 할 때 기계 학습, 맞죠? 그렇다면 기계 학습을 어떻게 사용합니까? 기본적으로 표준 알고리즘을 사용하는 방법입니다 데이터로부터 예측 통찰력을 얻는 방법 반복적 인 결정을 내린다 그러니 그걸 좀 어기 죠

물론 첫 번째는 기계 학습만을위한 것입니다 데이터가있을 때 작동하며, 많은 경우 데이터가 많습니다 데이터가 있지만 기존의 일반적인 방법과는 다릅니다 데이터를 사용한다는 점, 여기의 차이점 데이터에 적용하는 알고리즘입니다 표준입니다

그래서 당신이 소매 회사이든, 또는 당신은 석유 가스 회사, 또는 미디어 회사, 데이터를 가져 오는 방법, 적용한 알고리즘은 상대적으로 표준입니다 그리고 그것은 기본적으로이 큰 사용을 이끌었습니다 이 응용 프로그램의 큰 성장 기계 학습 같은 종류의 모델이 산업 분야에서 일하고, 업종 전반에서 일할 수 있습니다 따라서 이러한 표준 알고리즘을 데이터에 적용합니다

하지만 그건 표준 알고리즘 자체입니다 새로운 것도 아니다 의사 결정 나무에 대해 이야기하거나 무작위적인 숲에 관해서, 그들은 잠시 동안 주변에 있었다 그리고 그것들은 제가 표준 알고리즘을 의미하는 것입니다 의사 결정 트리는 표준 알고리즘입니다

현재 귀하가 속한 업종에 관계없이 신청할 수 있습니다 그러나 중요한 점은 이러한 알고리즘을 데이터에 적용한다는 것입니다 예측 통찰력을 창출합니다 일반적으로 데이터를 볼 때 우리는 무엇을하고 있습니까? 우리는 역설적 인 통찰력을 창출하고 있습니다 우리는 당신의 데이터를보고 있는데, 무슨 일이 있었는지 말하고있는 것입니까? 당신은 무슨 일이 일어 났는지 이해하려고 노력하고 있습니다

기계 학습은 예측적인 일을하는 것입니다 일어난 일을 예측합니다 하지만 그렇지 않습니다 이 시점까지, 나는 모든 것을 설명 할 수 있었다 비즈니스 분석가는 모든 회사에서 그 일을 수행합니다

인간 분석가가하는 것의 큰 차이 그리고 기계가하는 일은이 마지막 비트입니다 그것은 반복 된 결정 비트입니다 아이디어는 당신이 기계를 적용하지 않는다는 것입니다 1 년에 한 번 결정을 내릴 필요가 있는지 배우십시오 한 달에 한 번 결정해야 할 경우, 그것은 ML 사용 사례가 아닙니다

ML 사용 사례는 귀하가 반복해서, 하루에 여러 번, 여러 번, 여러 번 반복하십시오 매번 당신이하는 일입니다 고객이 귀하를 방문합니다 당신이 결정하고 싶다면, 장바구니입니다 버려 질거야? 자, 그건 당신이 가진 결정입니다 귀하의 웹 페이지를 방문하는 모든 고객을 위해 만들어야합니다

당신이 결정을하려는 경우, 이 장소에 새 상점을 배치해야합니까? 그것은 1 년에 50 번 할 수있는 결정입니다 50 회 1 년 결정은 좋은 후보가 아닙니다 기계 학습용 하루 수천 수백만의 의사 결정, 그것은 기계 학습을위한 훌륭한 후보자입니다 그 사이 어딘가에 이것이 데이터 분석인지 판단하라

작업인지 또는 컴퓨터 학습 작업인지 여부를 결정합니다 그래서, 당신에게이 아이디어가 어디에서 오는지에 대한 예를 들어주기 위해, Google에서 시작하겠습니다 따라서 우리의 주력 어플리케이션은 물론 검색입니다 우리는 검색 회사입니다 몇 년 전에 검색이 사용되던 방식입니다

검색 창에 들어가서 자이언트 키워드를 입력하면 우리는 샌프란시스코 자이언트를 보여 주어야했습니다 야구 팀 또는 뉴욕 자이언츠입니다 축구 팀입니다 어느 것을 먼저 보여 드릴까요? 글쎄,이 일을하는 데 사용되는 방법은 수색의 장안에 깊은 규칙 기반이 있었다는 것 쿼리가 자이언트라면, 사용자가 베이 지역에있는 경우, 그들에게 샌프란시스코 자이언츠의 결과를 보여주십시오 사용자가 뉴욕에있는 경우 표시합니다

뉴욕 자이언츠의 결과 그리고 사용자 또는 다른 곳에서 그것들은 키가 큰 사람들에 관한 결과입니다 그리고 그것은 기본적으로 한 단어의 거인에 대한 규칙 기반입니다 코드베이스가 얼마나 복잡한 지 상상해보십시오 여러 의미를 가질 수있는 모든 것을 얻습니다

그래서 그것은 본질적으로 문제입니다 당신의 분야가 직면하고 있다고 이것을 위해 손으로 코딩 된 규칙을 쓰고있다 이 쿼리 문구 중 그리고 기계 학습은 우리가 말하기 때문에옵니다 이것은 우리가 반복해서해야만하는 결정입니다 우리는 많은 시간을 할애해야합니다

그러면 우리는 이것을 어떻게 확장하여 우리가 누군가를 기본적으로 만들 필요는 없다 가능한 모든 단일 쿼리에 대한이 규칙 존재할 수있는 용어? 그리고 그것은 기본적으로 RankBrain을 자극 한 것입니다 본질적으로 시작된 기계 학습 알고리즘이다 이 전제에서, 어이, 누군가가 우리의 웹에 올 때 페이지로 이동하고 쿼리를 수행하면 가능한 결과의 목록, 우리는 그들 중 어느 것이 실제로 클릭했다 이제 기계 학습 모델을 교육 할 수 있습니다

기본적으로 최선의 결과가 무엇인지 예측한다 특정 검색어에 대한 것입니다 그리고 우리는 이것에 대한 충분한 예를 가지고 있습니다 우리는 달리기와 별도의 규칙을 만들 필요가 없습니다 모든 검색어에 대해 우리는 기본적으로 기계 학습 모델을 가지고 있습니다

검색은 순전히 기계 학습이 아닙니다 우리가 사용하는 많은, 많은, 많은 신호가 있습니다 그러나 기계 학습 신호가 밝혀졌다 기본적으로 개선의 종류를 창조하기 위해 우리는 2 년 동안의 일을 보았습니다 그리고 그것은 훌륭했습니다

그리고 그것은 기본적으로 구글이 앉아있는 것을 촉발 시켰습니다 이 기계를 배우는 사람은 다리가 있습니다 그래서 그것은 본질적으로 무엇을 말합니까? 여기 또 다른 예가 있습니다 이것은 우리 고객의 것입니다 그래서 롤스 로이스는 기본적으로 롤스 로이스라고합니다

그리고 당신은 차를 생각한다 그러나 롤스 로이스도 운송을한다 그리고 그들은 해양 데이터 세트를 기본적으로 해석 할 필요가있었습니다 그리고 다시, 그들이 이것을 할 방법은 기본적으로 거대한 데이터 세트였습니다 그들은 많은 규칙이 필요했습니다

그리고 그 규칙은 손으로 만들어야했습니다 그리고 그들은 기본적으로 안전 조치를 간단하게 만들 수있었습니다 기본적으로 손으로이 규칙을 만드는 대신에, 기본적으로 해양 데이터 세트를 가져 와서 어떤 종류의 행동을 유추하고 기계 학습을 통해 얻어야한다 그래서 기본적인 생각, 여기에있는 첫 번째 전제, 어디에서 – 인공 지능은 어떻게 사용합니까? 귀하의 비즈니스를 활용하기 위해 기계 학습을 어떻게 사용합니까? 1 번, 당신의 사업을 돌아보십시오 규칙을 만드는 모든 문제에 대해 생각해보십시오

오늘, 당신이 오늘 규칙을 만드는 어떤 문제 그리고 너는 좋은 일을 해왔다 규칙 기반 결정을 내릴 때마다 기본적으로 데이터 세트가 있습니다 이것은 내가 기본적으로 사용하는 정보입니다 의사 결정 트리에 들어간 정보 규칙과 결과를 수행합니다

실제로 맞았는가? 일련의 규칙을 사용하여 사기를 확인한 경우, 이 거래가 실제로 사기성 이었습니까, 그렇지 않습니까? 그래서 그것이 당신의 라벨입니다 그리고이 규칙 기반, 데이터 기반 일정 기간 동안의 결정, 데이터를 학습하는 기계가됩니다 그리고 당신은 기본적으로 수공예 사업에서 벗어날 수 있습니다 규칙을 학습하고 기본적으로 기계 학습으로 넘깁니다 모델, 기본적으로 무엇을 추측 할 수 있는가? 규칙이 있어야하며,보다 전체 론적 인 방식으로이를 수행해야합니다

첫 번째로, 어떻게 당신은 기본적으로 클라우드에서 인공 지능을 활용 하시겠습니까? 모든 규칙 기반 시스템을 살펴보십시오 모든 규칙 기반 시스템을 살펴보십시오 모든 시스템, 특히 당신은 결과를 수집하고 있습니다 의사 결정을위한 결과를 수집하지 않은 경우 당신이 만들고있어, 시작해, 그 결정이 실제로 효과가 있었는지 여부를 저장하기 시작하십시오 그렇지 않았다

그리고 기본적으로 이들을 기계 학습의 입력으로 사용하십시오 모델 그래서 이것이 1 위입니다 이제 두 번째 유스 케이스를 살펴 보겠습니다 이 경우 Google지도를 사용하여 설명 할 것입니다

기계 학습 여행, 회사의 여행 기본적으로 – 기계 학습 변환을 거친다 그래서 나는 항상 Google지도를 사용합니다 그리고 저는 그 다이어그램의 남쪽 어딘가에 살고 있습니다 그리고 저는 다이어그램의 북쪽에있는 Google 커클랜드에서 일합니다 그리고 매일

나는지도를보고,지도는 나에게 경로를 준다 집에서 일하기 그래서 큰 그리고 나는 그것을 볼 수 있습니다 그러나 그 기계 학습은? 그리고 당신은 말할 수 있습니다

글쎄, 나는 내가 사는 곳에서 구글에게 말했다 나는 내가 일하는 곳에서 구글에게 말했다 그리고 이것은 기본적으로 경로입니다 그리고 A에서 B로 가면 Dijkstra의 알고리즘입니다 이것은 별의 알고리즘입니다

우리는 학부 컴퓨터 과학 수업에서 그것을 가르칩니다 이것은 결정 론적 알고리즘입니다 따라서 기계 학습이 아닙니다 A에서 B로가는 것은 기계 학습이 아닙니다 그래서, 그것은 본질적으로 결정론적인 규칙입니다

종이에 적어서 할 수있는 규칙입니다 이건 어때? 그래서 저는 일본에있었습니다 그리고 저는 롯폰기라는 지하철역에있었습니다 그리고 Google Maps는 본질적으로 나에게 말했다 네가 롯폰기 역 2 층에 있다는 것을

기본적으로 Google Japan으로 이동하려면 이것은 당신이 가져야 만하는 길입니다 Google지도는 내가 2 층에 있다는 것을 어떻게 알 수 있습니까? 지하철역에요? GPS- 내 말은 지하에있다 나는 그것에서 고도를 얻지 않을 것이다 그래서 그 시점에서 내가 어디에 있는지 알 수있는 유일한 방법입니다 기본적으로 다른 데이터 소스를 사용하는 것입니다

그러나 요점은 그 단계에 도달하는 것입니다 당신이 지금 어떻게 생각하고 있는지 사용자 위치를 파악합니까? 다양한 데이터 소스에서 문제 번호 1을 해결해야합니다 A에서 B로가는 법입니다 이것이 귀하의 비즈니스의 핵심입니다 기본적으로 A에서 B까지 탐색 정보를 제공합니다

근본적으로 말하면, 좋아, 이제 어떻게 데이터를 사용합니까, 어떻게 ML 모델을 기본적으로 사용합니까? 그 경험을 향상 시키시겠습니까? 그리고 이것이 바로 두번째 비트입니다 핵심 비즈니스 경험을 향상시키는 것입니다 너는 1 번으로 그렇게한다 그리고 케이크에 장식을합니다 이것이 내가있는 곳인 Google Now 카드를보고 있습니다

회의 사이에 무엇을 할 수 있습니까? 그리고 나는 나에게 가야한다고 제안 할 수 있었다 그림의 종류를 가진 산토르 미술관 (Santore Museum of Art)에서 내가 좋아하는 것 자, 만약 당신이 스포츠 팬이라면 아마도 가까이에 스모 레슬링 매치를 제안했다 그러나 이것이 이제 완전히 개인화 된 것입니다 그리고 여전히 같은 위치에 있습니다

위치 기반 서비스를 제공하고 그 추가 정보 이것은 기본적으로 기업이 통과하는 여정입니다 기계 학습 사업의 핵심부터 시작하십시오 당신은 일반적으로 해결하고 이미 해결했습니다

기본 주소를 찾는 방법을 살펴 보겠습니다 그 경험의 개별 유스 케이스, 더 나은 방법으로 사용자 경험을 그리고 마지막으로, 어떻게하면 기본적으로 그 아주 드문 경우의 매우 긴 꼬리에 도달하십시오 우리가 아주 잘해야 할 일이 뭐야? 그래서 다른 예를 들어 보겠습니다 이것은이 여행에 대해 다시 이야기 할 경우에 해당됩니다 이것이 어떻게 작동하는지에 대한 아이디어를 제공합니다

우리가 기본적으로 원한다고 가정 해 봅시다 우리는 미디어 회사입니다 TV 프로그램에 가장 적합한 시간대를 찾으십시오 그럼 우리가 어떻게해야합니까? 우리는 기본적으로 다음과 같은 데이터를 가지고 있습니다 좋아, 여기에 나이와 숫자가있어

특정 연령의 시청자 기본적으로이 쇼와 같이 전에 본 쇼를 본 그룹 그리고 나는 가지고있는 사람들의 위치 정보를 가지고있다 과거에이 쇼를 보았습니다 그리고 위치 정보에 기초하여, 바람직 함을 바탕으로 인구 통계를 기반으로 그 인구학의 안에서, 나는 근본적으로 말할 것이다, 좋아, 우리는이 새로운 쇼를 가져갈거야 수요일 오후 7시 30 분처럼 보입니다

이 쇼에 가장 적합한 시간대입니다 이것은 본질적으로 기존의 데이터 분석입니다 아직 여기에서 학습하는 기계가 없습니다 그러나 이렇게하기 위해 수집 한 데이터는 무엇입니까? 기본적으로 많은 데이터를 수집했습니다 쇼를 보는 사람들의 인구 통계 주위에

기본적으로 각기 다른 쇼의 장르를 발견했습니다 이 위치에있는 모든 사람들의 위치를 ​​알 수 있습니다 이 쇼들을보고있다 이제이 모든 정보가 주어지면, 우리는 그 일의 두 번째 단계 인 다음 일을 할 수 있습니까? 여행의 두 번째 단계는 무엇입니까? 영화 추천 시스템을 구축합시다 우리는 말할 수 있습니다

좋습니다 영화 추천 시스템을 구축합시다 그리고 첫 번째 접근법, 간단한 접근법 이 같은 것입니다 인기있는 영화를 추천 할 것입니다 이 사용자가 좋아하는 장르에서 30 세에서 39 세 사이의 사용자가있는 경우, 그는 남성이고, $ 50,000와 $ 100,000 사이를 만들고, 한국에 살고 있고, 시간이 지남에 따라 이 사람이 로맨틱 컴 – 로맨스, 두 코미디, 로맨스, 코미디, 내 예측 알고리즘 아마 내가 장르를 찾도록 내버려둬 라

사용자가 가장 자주 본 것은 – 이 경우 코미디예요 그들이 어디에서 살고 있는지 찾아야 해 한국은 – 한국에서 가장 인기있는 코미디 영화 5 편을 찾아보십시오 그리고 그것은 그 사용자를위한 나의 영화 추천입니다 아주 간단하고 규칙 기반 알고리즘입니다 기본적으로 데이터를 이용합니다

그러나 그것은 이미 가지고있는 데이터에 의존합니다 사물의 역사에서 벗어난 구조화 된 데이터 어떤 사람이 본 것과 당신이 아는 어떤 것 이 특정 사용자에 대해 이것이 어떻게 기계 학습이됩니까? 너는 이것을 뒤집는다 모델이 있고, 데이터가 있으며, 나는 예측을 가지고있다 대신 데이터에서 시작합니다

너 내가이 아이디어에서 시작하지 않는다 모델이 무엇이어야하는지 알기 때문에 나는 그 데이터를 보러 갈 때, 나는 내 예측을 할 것입니다 대신 데이터에서 시작합니다 내 데이터가 뭐니? 나는 모든 영화를 가지고 있고, 나는 모든 등급을 가지고있다 모든 사용자가 모든 영화를 다 끝냈습니다

그리고 나서 당신의 모델은, 만약에 내가 가면 계속 나아가고 예측을하기 위해서, 나는 모든 비슷한 영화를 찾기 위해 유사한 사용자가 사용자의 현재 선호도, 나이, 그리고 다양한 것들이 있습니다 그러나 여기에 주목해라 장르, 나이, 소득, 장르 등은 더 이상 존재하지 않습니다 이것은 훨씬 더 비정형이다 기본적으로 사람들은 그렇지 않다는 것을 고려할 수 있습니다

당신은 그들을 구부릴 수 없습니다 대신, 그것은 매우 연속적인 범위입니다 그리고 당신은 유사성 측정을 찾고 있습니다 그리고 그것은 기본적으로 기계 학습이 당신을 돕는 것입니다 기본적으로 여러 요소를 고려하는 데 도움이됩니다

그들을 적절하게 무게를 단다 그래서 이것은 본질적으로 그 여행입니다 너는 숲에서 빠져 나간다 기본적으로 핵심 문제를 해결하고 데이터로 해결하며, 그 데이터를 가져 오는 방법을 생각하고있다 분석으로 해결 한 다음 해당 데이터를 사용합니다

그리고 당신이 그렇게 할 필요가없는 방식으로 다시 생각해보십시오 당신은 기본적으로 다른 요소들을 설명 할 수 있습니다 그래서 다른 말로하면, 두 번째 것은 기계 학습으로 할 수있는 일, 기계의 비즈니스를 활용하는 두 번째 방법 학습, 이것이 당신이 개인화하는 방법입니다 귀하의 응용 프로그램, 그리고 이것은 당신이 기본적으로 어떻게 30 세에서 39 세 사이의 사람들과는 다른 사람들에게 다가 서십시오 한국에 사는 사람

소규모 그룹을 찾을 수 있습니다 그들이 맘에 든다고 목표를 세우고 권장 사항 그래서 기계 학습은 기본적으로 – 나는 대부분 우리가 우리가 사업은 우리가 기본적으로 말하는 것입니다 우리는 배포판의 중간 부분을 차지할 것입니다 우리는 모든 것을 목표로 삼을 것입니다

사용자의 80 %를 향해 우리는 다른 20 %를 잊을 것입니다 미친 짓을해라 하지만 대신, 어떤 기계 학습 당신은 당신이 기본적으로 내려갈 수 있다는 것입니다 그 꼬리로, 그리고 기본적으로 모든 사용자가 찾을 유사한 사용자를 추천 할 수 있습니다 그래서 세 번째로 나가기 위해서 내가 제일 좋아하는 따옴표로 시작하는 것은 Andrew Ng입니다

Andrew Ng는 물론 유명한 기계입니다 학습 연구원 그리고 당신은 그가 최신 진보에 대해 모두 불 태워 줄 사람이 되십시오 기계 학습 이론에서 그러나 Andrew는 "최상의 알고리즘이 아닙니다

그것은 누가 가장 많은 데이터를 가지고 있는지에 관한 것입니다 " 그게 우리가 반복해서 배웠다 그 최고의 기계 학습 알고리즘 다른 것보다 더 많은 데이터에 액세스 할 수 있습니다 두 개의 알고리즘을 비교할 때, 모두가 당신에게 말하는 것을 잊어 버려라 본질적으로 똑같은 일을하는 두 가지 제품이 있다면, 훈련받은 데이터가 무엇인지 물어보십시오

이미지 모델이 두 개인 경우, 어떤 데이터가 훈련 되었습니까? 그리고 한 모델이 더 많은 데이터와 더 나은 데이터에 대해 교육을 받았다면 다른 하나보다 알고리즘의 품질은 중요하지 않습니다 그 데이터는 기본적으로 품질을 제어하려고합니다 당신이 얻는 결과 중 그래서 필연적으로 그것은 데이터, 데이터의 품질, 및 데이터의 양 그래서, 그게 길과 관련이 있습니다

우리는 우리의 데이터 책임 의식에 접근합니다 데이터 관리로 시작합니다 어떻게 데이터를 수집하는지 다시 생각해 보면 – 그리고 이것은 지금 내가 지금 알아 차리고있는 것입니다 우리가하는 일은 우리가 우리의 데이터를 우리는 그것을 집계하고 그것을 저장합니다, 우리는 알고리즘, 기계 학습을 구축하려고합니다 알고리즘 및 데이터 분석 작업을 수행합니다

그게 무슨 뜻 이니? 기계 학습을하는 대신 모든 개별 거래에서 집계하여 매출 예측 하루 동안의 모든 거래와 일일 데이터 수집 판매를 예측하는 데 사용하십시오 방금 무슨 짓을 한거니? 이 매우 풍부한 데이터 소스를 사용했습니다 모든 개별 거래에 대해 이제까지 일어났다, 당신은 그것을 전부 멀리 던져 버렸다, 당신은 모든 것을 결합했습니다 그리고 이제 기본적으로 365 점의 데이터 세트가 있습니다 그리고 그것을 사용하여 판매를 예측하려고합니다

중지 365 점에 모델을 훈련시키지 마십시오 원본 데이터로 돌아가서 8000 만 건의 거래가있었습니다 필터링 된 데이터가 아니라 모델을 교육해야합니다 집계 된 데이터에 있지만 원시 데이터에는 원래 데이터에

그래서 기계 학습은 많은 것을하는 것에 관한 것입니다 가능한 한 데이터 너무 일찍 집계하지 마십시오 너무 일찍 필터링하지 마십시오 너무 일찍 데이터를 버리지 마십시오

그렇다고해서 물건을 정리해서는 안된다는 의미는 아닙니다 당신은 그들이 양질인지 확인해야합니다 우리는 요점을 이해하려고 노력 중이다 데이터를 버릴 필요가없는 곳, 이 데이터를 집계하여 각 개별 거래 데이터에있는 소음 더 나은 정보를 얻기 위해 필요한 올바른 정보 기계 학습 모델 그러나 당신이 가진 데이터에 관한 것이 아닙니다

또한 모든 부수적 인 것들에 대해 생각해보십시오 귀하의 비즈니스에 영향을 미칩니다 따라서 데이터에 관한 것이 아닙니다 데이터웨어 하우스에 날씨 데이터에 대해 생각하고, 교통 데이터에 대해 생각하고, 정치적 사건에 대해 생각하십시오 귀하의 비즈니스에 영향을 미치는 모든 것들, 그래서 기본적으로 데이터 세트에 참여하는 방법에 대해 생각하지만 모두 이 다른 다양한 요인들

그리고 그것은 여러분이 귀하의 기계 학습 모델을 구축하는 데 사용해야합니다, AI 시스템을 구축하십시오 그런 다음 이제 데이터웨어 하우스를 가져 와서, 모든 제 3 자 및 파트너 정보를 고려함 당신이 참여할 수있는, 자신에게 세 번째 질문을하십시오 오늘 수집하지 않는 데이터를 수집 할 수 있습니까? 센서가 정말로 저렴 해지고 있습니다 80 억 달러 상당의 장치가 있습니다 작년에 온라인에 올랐습니다

그것은 단지 놀라운 숫자입니다 그리고 이것은 방금 연결된 장치입니다 나는 그 장치에 대해 말하는 것이 아닙니다 영구적으로 연결되어 있지 않습니다 이들은 단지 연결된 장치입니다

그리고 그들은 데이터가있는 지점까지갑니다 유비쿼터스, 그리고 당신은 그것을 얻을 수 있습니다 문제는 데이터를 수집하고 있습니까? 실제로 비즈니스에 영향을 미칩니 까? 따라서 데이터 전략이 가능한 많은 출처에서이 데이터를 수집해야합니다 당신이 할 수있는 것처럼, 그들의 전화기, 또는 그들의 IoT 장치, 또는 무엇이든 그런 다음 기본적으로 취하는 방법에 대해 생각해보십시오

네가 지금 가지고있는 그 거대한 데이터 – 큰 데이터로 여기서 내가 의미하는 것은 데이터의 양, 집계되지 않은, 필터링되지 않은, 원시 데이터는 다른 모든 것과 결합됩니다 들어오는 스트리밍 데이터에 영향을줍니다 예전에는 3 개의 V가 다른 말로하면 – 볼륨, 다양성 및 속도 이것이 기본적으로 제가 여기서 말하는 의미입니다 그리고 그것은 실제로

당신이 그렇게 생각할 때, 그리고 당신은 신중하게 영향을 미치는 이러한 모든 것들을 고려해야합니다 그것은 변화하는 비즈니스입니다 첫 번째 게임을 가져 가세요

10 년 전, 게임은 보드 게임이었습니다 이제 게임은 기본적으로 완전히 사용자 정의되었습니다 그것을 연주하는 사람에게 당신이 만나는 문자들 당신이 게임을 할 때 매우 다르다 캐릭터와는 다른 기술을 가지고있다

다른 누군가가 만나는 곳 그게 가능한 유일한 이유입니다 게임 회사의 데이터 양 때문입니다 수집 할 수있는 방법과 사용자 정의 방법 당신이 게임을 할 때 게임 그리고 당신이 걸어 내려 갈 때 이것을 반복해서 본다

완전히 변화하는 기업 목록 그들이 수집하고있는 데이터를 재고함으로써 그리고 그들이 데이터로 무엇을 할 수 있는지 그래서 다른 하나의 예로서 Schlumberger, JCP의 고객 중 하나 인 Cloud IoT Core가 어떻게 엔지니어링에 집중할 수 있었는지 기본적으로 신뢰할 수있는 경제적 인 것들을 건설하려는 노력 그들은 약 30 테라 바이트의 석유 화학 데이터에 대해 이야기하고 있습니다 이제 그들은 모델을 구축하는 데 사용할 수 있습니다 그래서 그것은 기본적으로 당신이 생각해야하는 규모입니다

그래서 내가 바라는 세 번째 측면은 시스템을 설계 할 때, 내년에 너를 기대하고 디자인해라 더 많은 데이터가 있습니다 이 패배 주의자의 생각으로 시작하지 마라 가지고있는 데이터는 모든 데이터입니다 오늘 네가 가지고있는 내년에는 더 많은 데이터를 얻을 수 있습니다

기본적으로 더 많은 것을 얻으려고 노력하고 싶습니다 데이터,보다 다양한 데이터 및 모델 구축 저것을 설명하기 위하여 이것이 세 번째 측면입니다 더 많은 데이터를 디자인하고, 필터링되지 않고 수집되지 않은 데이터의 경우 방금 이야기하는 또 다른 아이디어를 얻으려면 장치의 종류와 존재에 대해 그들을 연결할 수 있고 기본적으로 몇 년 전에 존재하지 않았던 새로운 비즈니스를 창출하십시오 많은 사람들이 Philips Hue, 기본적으로 우리는 조명이 작동하는 방식을 바꿀 수 있습니다

그리고 이제 Phillips는 기본적으로 프로세스를 진행합니다 하루 2 천 5 백만 건의 원격 조명 명령, 무언가– 3 년 전에 존재하지 않았던 것 그리고 그것은 단지 모든 것 때문에 가능합니다 함께 연결되어있는 이러한 추세 중 – 데이터, 연결된 장치, 기본적으로 훈련 할 수있는 능력 귀하의 모델과 기본적으로 비정형 데이터 처리 조명 명령과 비슷합니다 하지만이 모든 것이 훌륭하지만 수집 할 때 어떤 일이 발생합니까? 페타 바이트 및 엑사 바이트의 데이터? 당신이 모든 시간을 보내고 있다면 프로비저닝, 안정성에 대한 걱정, 성장하는 규모를 다루는 것을 걱정하고, 활용에 대해 걱정한다면, 당신은이 데이터로부터 가치를 도출하지 않을 것입니다

당신은 당신의 머리 수 전부를 모두 쓰고있을 것입니다 귀하의 인적 자원을 모든 엔지니어는 기본적으로 이 데이터를 유지하는 일 그리고 그것은 당신이하고 싶은 것이 아닙니다 당신은 기본적으로 데이터를 도출하기를 원합니다 그것으로부터 가치를 끌어 낸다

당신은 데이터를 이해하고 싶습니다 그리고 이것은 기본적으로 Google의 경험이 많다 그리고 이것은 우리가 이야기 한 이유 중의 하나입니다 우리는 기본적으로 serverless 데이터 분석을 구축했습니다 서버리스 ETL 툴, 서버리스 머신 학습 툴

그 이유는 우리가 데이터 플랫폼을 볼 때, 모든 것이 서버리스입니다 모든 것이 완벽하게 관리되는 서비스입니다 두 가지를 할 수있는 방법이 없기 때문입니다 두 엔지니어가 모두 걱정할 방법이 없습니다 약 필요할 때 데이터가 도착할 것입니다

수집 할 수 있고 기본적으로 그 데이터로부터 가치를 이끌어 낼 수있는 모델을 만들 수 있습니다 그래서 우리가 시작했다고 생각하지만 MapReduce에 대해 이야기하고 이것들과 동등한 2004 년에 우리는 클러스터 중심 방식으로 사고의 규모가 확대되지 않았습니다 그리고 우리는 기본적으로 Apache Beam의 오픈 소스 인 Dataflow와 같이, 기본적으로 당신이 serverless를하고 싶다는이 아이디어를 다루기 위해서 ETL, serverless 추출로드 변환, 빌드 파이프 라인 따라서 서버리스를 순전히 것으로 생각하지 마십시오 낮은 수준의 기능을 둘러싼 다

Serverless는 전체 워크 플로우에 관한 것이어야합니다 전체 워크 플로우는 서버가 필요합니다 그리고 그것은 당신이 기본적으로하는 방식입니다 페타 바이트 및 엑사 바이트의 데이터를 관리합니다 BigQuery를 사용했다면 정확히 우리가 그것에 대해 어떻게 생각하는지

당신은 당신이 SQL 코드를 작성한다고 생각합니다 그리고 당신은 수천 명에 대해 걱정하지 않아도됩니다 기본적으로 실행되는 슬롯 수 당신을위한 그 질문들 그것이 당신이 생각해야하는 방법입니다 인프라가 아닌 코드 측면에서 생각해야합니다

그래서 이것은 – BigQuery는 사람들이 즉시 사용할 수있는 기능 중 하나입니다 그들이 그것을 볼 때 얻으십시오 그리고 그것은 많은 변형을 일으 킵니다 많은 고객이 있습니다 에어 아시아는 예를 들어, 기본적으로 확장 할 수있는 플랫폼이 필요하다

데이터의 놀랄만 한 성장에 대한 우리의 식욕을 가지십시오 그들이보고있는 것 BigQuery는 이러한 작업에 이상적이었습니다 따라서 데이터 양이 증가 할 때, 당신은 그것으로부터 가치를 이끌어 낼 필요가 있습니다 완벽하게 관리되는 서버리스 솔루션에 대해 생각해보십시오

너와 관련된 일에 정착하지 마라 클러스터를 회전시켜야합니다 그래서 아이디어는 당신이해야 할 일에 시간을 할애하는 것입니다 그것을하는 방법에 시간을 투자하지 마십시오 따라서 인프라가 아니라 통찰력에 초점을 맞 춥니 다

그래서 이것의 또 다른 예가 Blue Apron입니다 BigQuery로 이동 한 후 또는 쿼리 시간 기하 급수적으로 감소했다 그래서 그들은 훨씬 더 많은 질의를 할 수 있었고, 의사 결정을 가속화하십시오 여분의 날은 매우, 매우, 매우 귀중합니다 그리고 나서, 우리가 얻는 다른 질문은 물론입니다

하지만, 나는 많은 양의 데이터를 가지고있다 이 모든 것을 스스로 관리하는 것을 정말로 멈출 수 있습니까? 그리고 내가 좋아하는 일화는 Evernote이다 이것은 우리의 전문 서비스에 의해 수행되기 때문에 팀, 3 개 및 1/2 페타 바이트 콘텐츠 마이그레이션 70 일 만에 그리고 이것들은 모두 아주 작은 문서들입니다 수백만 명의 사용자가 소유하고 있습니다 그리고 우리는 그것을 할 수 있습니다

그래서 확실히 가능합니다 빨리 움직일 수 있습니다 그리고 당신은 기본적으로 이걸 벗어날 수 있습니다 자체 인프라 사업 관리 그래서 4a, 당신에게 인프라에 대해 잊어 버려라

4a가 있다면 4b가 있어야합니다 그리고 그것은 무엇입니까? 그래서 이것은 데이터 부분에 관한 것입니다 그러나 다른 클라우드 플랫폼 AI에서 성공하기를 원한다면 당신에게 줄 수 있어야합니다 그리고 유연성이 필요합니다 기본적으로 기계를 작동 할 수있는 능력이 있어야합니다

다양한 시나리오에 대한 학습 런타임 예를 들어 Google 클라우드에서 Cloud Datalab 또는 Deep Learning Image로 프로토 타입을 만들 수 있습니다 작은 노트북에서 로컬로이 프로토 타입을 수행 할 수 있습니다 Kubeflow로 온 – 프레미엄으로 실행하십시오 시간이 지남에 따라 ML 엔진으로 마이그레이션하십시오

따라서 다양한 시나리오에 맞게이 기능을 사용할 수 있습니다 예를 들어, 필드에 장치가있을 경우, 그 장치에서 모델을 실행할 수 있기를 원한다면, 당신은 당신의 모델이 당신이 구름 위에서 훈련 할 수있는 그런 휴대용, 그러나 현장에서 장치에 대한 예상을 수행하십시오 따라서 어떤 시스템이든 기본적으로 컴퓨터 학습을 실행합니다 런타임에, 이것은 모든 다른 시나리오를 지원합니다 클라우드 교육, 장치에 대한 예측, 장치에 훈련, 등등

실현해야 할 또 다른 일은 깊은 학습 만 데이터 세트가 크기 때문에 작동합니다 그래서 왼쪽 그래프는 기본적으로 교육 데이터 크기에 대해 이야기합니다 이것은 특정 문제에 대한 것입니다 그러나 다른 문제들, 당신은 똑같은 것을 봅니다 그래서 그것을 볼 수없는 등 뒤에서 당신을 위해, x 축은 2 부분 20, 2 부분 21, 2 부분 22 등을 갖는다

따라서 각 그리드는 데이터 크기가 두 배가됩니다 그리고 데이터 크기가 두 배가 될 때마다 오류율 선형 적으로 떨어진다 따라서 오류를 삭제하십시오 x로 비율, 기본적으로 – 귀하의 데이터를 기본적으로 설정 x의 힘을 가져야 만합니다 데이터 세트가 실수로 두 배로 선형 향상됩니다

율 그래서 그것은 단지 작동합니다 – 오류가 발생하면 더 많은 데이터가 발생합니다 그러나 더 많은 데이터에 대해 이야기 할 때, 우리는 10 % 더 많은 데이터를 말하는 것이 아닙니다 20 % 더 많은 데이터를 말하지 않습니다 우리는 1,000 배 더 많은 데이터를 말하고 있습니다

데이터 우리는 여기에 힘을 말하고 있습니다 훨씬 더 많은 데이터가 있습니다 이것이 우리가 기억하고 싶은 한 가지입니다 왼쪽에

오른쪽은 곡선의 다른 무서운 부분이고, 이것은 기계 학습 모델입니다 최첨단 기계 학습 모델 그리고 x 축에는 올해가 있습니다 y 축은 필요한 계산 기능입니다 하루 당 페타 플롭스

그래서 왼쪽 편에있는 AlexNet은 근본적으로 깊은 학습을 시작한 것입니다 혁명은 구석에있어 그리고 다시 y 축은 대수입니다 그래서 모델이 그 격자에서 올라갈 때마다, 계산 능력은 10 배, 100 배, 1,000 배가됩니다 지금은 컴퓨팅 성능을 살펴보십시오

지난 6 년간 10,000에서 맨 위 y 축에 00001 하단에 있습니다 즉, 수행해야 할 컴퓨팅 성능 최첨단 기계 학습이 1 천만 개 이상 증가했습니다 지난 6 년 동안 그저 잠시 동안 기다리십시오 필요한 데이터의 양은 두 배로, 네 배로, 4 배

그것은 권력에 들어갑니다 데이터 요구 사항은 강력합니다 모델 요구 사항은 강력합니다 그래서 기본적으로 두 가지 힘 법칙이 있습니다 그리고 이것은 왜 당신의 전통적인 칩, 건축, 무어의 법칙, 그들은 더 이상 일하지 않습니다

즉, 이것은 우리의 지도력이 보았던 것입니다 3 ~ 4 년 전에 개발을 시작하게되었습니다 TPUs, 기본적으로 완전히 바꿀 필요가있다 어떤 종류의 데이터를 다루어야하는지에 대한 게임 어떤 종류의 컴퓨터가 필요한지 알아야합니다 그래서, 기계를 수입하기를 원한다면, 효율적이고 비용 효율적인 장소가 필요합니다

기계 학습을 할 수 있습니다 따라서 우리가 제공 할 때 우리는 Compute Engine을 제공합니다 기본적으로 CPU, GPU 또는 TPU를 첨부 할 수 있지만, 이 하이브리드 환경을 제공하는 Kubeflow는, 그리고 Kubernetes 엔진, 당신에게 좋은 장소를 제공합니다 Google Cloud 및 Cloud ML 엔진에서 실행하려면 완벽하게 관리되는 서버리스를 제공합니다 그들은이 모든 하드웨어를 사용합니다 기본적으로 분산 방식으로이 작업을 수행합니다

따라서 증가하는 데이터 양을 처리하는 방법 분포입니다 그리고 점점 더 많은 양의 컴퓨팅을 처리하는 방법 더 나은 하드웨어 칩입니다 따라서 분산 된 하드웨어 칩이 필요합니다 그리고 그것은 기본적으로 ML 엔진과 같은 것입니다 당신을 준다

그것은 당신에게 배포판을 제공하고, 그것은 당신에게 최고의 품종의 칩 할 일이 둘 다 필요합니다 기계 학습에 성공했습니다 그리고 실현해야 할 다른 것은 그 기계 학습은 ML의 증가하는 수준으로 움직이고있다 추출

미안, 너 못 봤어 나는 그것이 본 것 같아요, 그래서 당신은 이미 보았습니다 3 년 전의 일부터 시작하겠습니다 AUCNET은 일본의 경매 회사입니다 그리고 그들은 기본적으로 – 길을 원했습니다

그들은 자동차 경매가 작동하는 방식을 재고하고자합니다 그것이 일하는 방식은 당신이 차를 팔고 싶다는 것이 었습니다 너는 기본적으로 채울거야 어떤 차가 있었는지, 얼마나 오래되었는지, 등등, 등등 양식 채우기 – 지루한

그래서 AUCNET이 한 것은 그들이 말했습니다 오, 그냥 돌아 다니십시오 너의 차, 너의 차 사진들, 사진을 우리의 구름에 업로드하고, 우리는 당신의 차가 얼마나 가치가 있는지 말해 줄 것입니다 양식을 채우는 것 사이의 마찰을 상상해보십시오 차 사진을 찍어 라

비즈니스를 완전히 변경했습니다 하지만 그렇게하기 위해서 그들은 자동차 가격을 책정 할 수있는 맞춤형 이미지 모델을 만들 수 있습니다 그들은 그것을해야만했다 그들은 스스로 텐서 흐름 코드를 작성해야했습니다 우리는 그들이 그것을 도왔습니다

그들은 그것을 썼다 그것은 효과가 있었다 그들은 사업을 바꿨습니다 큰 그러나 나는 추상화 수준을 높이는 것에 대해 이야기하고 있습니다

그래서 AUCNET은 tensorflow 코드를 작성했습니다 다음 수준까지, Ocado Ocado는 영국 식료품 가게입니다 그들은 기본적으로 고객 서비스 이메일을 처리하려고했습니다 그것이 작동하는 방식은 고객이 이메일을 보내는 것이 었습니다

오카도 (Ocado)의 누군가가 이메일을 읽는다 고 말하면서, 오,이 고객은 기본적으로 뭔가를 말하고 있습니다 우리 농산물에 대해서 그리고 그들은 생산 부서에 전달합니다 그리고 생산 부서의 사람 그것을 읽고 그것에 대해 무엇을 할 것인지 결정합니다 그것은 꽤 낭비적인 과정입니다

그래서 Ocado는 무엇을 했습니까? 그들은 Natural API, Google API를 사용했습니다 Google 데이터에서 즉시 사용할 수 있으며, 기본적으로 매우 구체적인 것을 식별하지는 않습니다 Ocado 특정 그러나 기본적으로 고객을 말할 것입니다 행복한 고객은 행복하지 않습니다

농산물에 관한 이야기, 등등 그리고 Ocado는 기본적으로 NLP API를 사용하고 기본적으로 말한 두 번째 모델, NLP API가 태그를 제공하면 어떤 부서에서 너는 그걸로 보낸거야? 즉, 그들은 원시 텍스트로 갈 필요가 없었습니다 그리고 완전한 모델을 직접 구축하십시오 기본적으로 NLP API를 기반으로 구축 할 수 있습니다 더 작고 쉬운 모델을 만들 수 있습니다

그것은 내가 말하는 추상화 수준입니다 기술적 인면이 향상됨에 따라, 당신은 점점이 수준으로 내려갈 필요가 없습니다 원시 이미지, 원시 텍스트 다루기 기본적으로 기존 API를 기반으로 구축 할 수 있습니다 그 사이에, 기본적으로 – 사람들이 기본적으로 콘텐츠를 업로드 할 수 있습니다

때로 사람들이 부적절한 콘텐츠를 업로드하는 경우 이유가 무엇이든지 그리고 그렇게 본 것은 그것을 거부하기를 원합니다 그리고 그들은 Vision API를 사용하여 거부 할 수있었습니다 똑바로, 그냥 그대로 사용하십시오 그리고 나서 일본 소매 업체 인 유니클로 (Uniqlo) 기본적으로 필요합니다 – 기본적으로 chatbot을 만들고 싶었습니다

그리고 다시, 그들은 프로그래밍 할 필요가 없습니다 개개의 단어의 그들은 대화에서 의미합니다 그들은 기본적으로 시제로 쓸 수 있습니다 이 대화는 다음과 같습니다 누군가 블라우스를 찾고 싶어

그들의 셔츠 그리고 챠트 봇은 기본적으로 현실감 넘치는 경험 만들기 사용자를위한 그래서 당신은 매우 낮은 수준의 LSTM 모델의 관점에서 생각할 수 있습니다 그러나 매우 높은 수준에서 고객의 의도는 무엇입니까? 그들이하는 전형적인 거래 란 무엇입니까? 걸을거야? 그리고 이것이 당신이하는 방법입니다 ML을하고 있다면, 이것은 당신에게 무엇을 의미합니까? 기본적으로 선택하고 싶다는 의미입니다 그 추상화의 모든 수준에서 할 수있는 프레임 워크 계층

낮은 수준의 텐서 흐름 모델을 만들고 싶습니다 완전히 관례, 문제 없어요 ML 엔진을 사용하십시오 기본적으로 out-of-the-box 모델을 사용하려면 기본적으로 방대한 양의 데이터에 대해 교육을 받았지만 문제는 없습니다 Vision API, Translate API, Speech API를 사용하십시오

중간에 뭔가있는 것이 있습니다 기본적으로 모든 것을 활용하고 싶습니다 Vision API가 제공하지만 사용자 정의 할 수 있습니다 너 자신의 일에? AutoML을 사용하십시오 오늘 기조 연설에서 AutoML은 더 이상 단순하지 않습니다

비전에 대해서 우리는 또한 AutoML의 텍스트 분류, 아이디어 기본적으로 Google의 위에 구축 할 수 있습니다 그래서, 그것은 4b입니다 클라우드에서 기계 학습을하는 방법에 대해 생각할 때, 모든 과대 선전에도 불구하고 기계 학습이, 궁극적으로 여전히 소프트웨어입니다 그리고 구매 결정을 내리고 의사 결정을 내리고 싶습니다

그리고 당신은 품질, 당신이 할 수있는 일의 종류에 따라 그래서, 우리는 요약 할 것입니다 그래서 1 위, 기계 학습은 규칙을 작성하는 많은 문제를 해결하는 데 사용됩니다 오늘 2 번, 기계 학습은 당신이 개인화하는 방법입니다 모든 응용 프로그램

이것은 당신이 긴 꼬리에 도달하는 방법입니다 3 번,이 기대치로 시스템을 설계하십시오 내년에는 더 많은 데이터를 얻을 수 있습니다 그리고 4 번 – 저는 여기에 a와 b를 결합했습니다 – 인프라를 잊을 수있는 플랫폼을 사용하십시오 그것은 당신에게 훌륭한 미리 만들어진 많은 모델을 제공합니다

고맙습니다 [박수 갈채] [음악 재생]

How Ocado Leveraged AI on Google Cloud to Transform their Retail Platform (Cloud Next ’18)

[음악 재생] 닉 마틴 : 안녕하세요 나는 닉 마틴이다

저는 영국의 소매업을위한 Google의 클라우드 비즈니스 팀장입니다 그것을 만들기 위해 잘하게 여기에 오전 9시 Google NEXT 컨퍼런스의 마지막 날에 우리는 경쟁이 치열하다는 것을 알고 있습니다 어제 밤 파티에서 그리고 또한 기조 연설에서 그 순간에 자리를 잡았고, 그렇게 잘되었습니다 이 세션을 선택해 주셔서 감사합니다 오늘 아침 우리 랑 시간을 보내고 싶어

통찰력으로 세션을 시작하고 싶습니다 소매업 자의 가장 중요한 자산으로 – 쇼핑객 오늘날 쇼핑객은 호기심 많고 까다 롭고 참을성이 없습니다 구매자는 귀하의 비즈니스에 더 많은 접점을 가지고 있습니다 그 어느 때보다도

그들은 귀하의 웹 사이트를 방문합니다 그들은 당신의 앱을 사용합니다 그들은 당신의 육체적 인 상점에옵니다 고객 서비스 라인에 전화하십시오 포인트 제도에 가입하고 YouTube 동영상을보고, Facebook 페이지에 들러 전자 메일, 목록, 그리고 더

또한 광고를 보게됩니다 검색, 사회, 비디오, TV, 라디오, 인쇄 및 집 밖에서 따라서 이러한 상호 작용은 부를 창출합니다 고객 정보 그리고 그들이 당신의 사업에서 원하는 것 비즈니스에 좋은 소식이 있습니까? 음, 그 정보가 효과적으로 사용되지 않습니다

실제로 Google이 실시한 공동 연구에 따르면 그린버그와 함께, 최소한 62 %의 사람들 브랜드가 구매 내역을 사용할 것으로 기대한다 그들에게 개인화 된 경험을 제공합니다 그러나 현재 42 %만이 대부분의 브랜드가 현재하고 있다고 생각합니다 왜 그런가요? 전달하는 것이 불가능한 일입니까? 모든 접촉에서 관련성 있고 개인화 된 경험 포인트? 이것을 막을 수있는 이유는 무엇입니까? 일반적으로 조직의 데이터 많은 곳곳에 퍼져있다 광고 캠페인, CRM 시스템, 고객 서비스 블로그, 웹 사이트 / 앱 분석, 충성도 프로그램, 그리고 더 많은, 더 많은합니다

따라서 이것은 매우 어렵거나 매우 어려울 수 있음을 의미합니다 각 고객의 단일보기 따라서 거의 60 %의 마케팅 담당자가, Forrester에 따르면, 그것이 남아 있다고 다양한 비즈니스 기능에 이해 관계자를 부여하기 어렵다 데이터 및 필요한 통찰력에 대한 액세스 그리고 그것 없이는 어떻게 진정으로 개인화 된 경험담? 그러나 그러한 경험을 제공하기 위해 고객이 지금 기대하는 조직, 조직 매우 다른 접근 방식을 취할 필요가있다 핵심은 모든 데이터를 보유해야한다는 것입니다

일부 데이터 만이 아닙니다 한 곳에서, 구조화되고 구조화되지 않은, 모든 다른 유형 한 곳에서 나면 잠금 해제 할 수있는 위치에 있습니다 그것이 제공하는 가장 가치있는 통찰력 클라우드 솔루션을 사용하면 데이터 저장소를 무너 뜨릴 수 있습니다

당신이 더 잘할 수 있도록 당신의 데이터를 조직하십시오 더 나은 통찰력을 얻기 위해 그것을 분석하고 활성화하라 그리고 더 나은 예측 결과를 이끌어냅니다 적극적으로 활동하는 많은 조직과 이야기합니다 인공 지능 통합 작업 데이터 분석 전략에 대한 기계 학습 등이 포함됩니다

그러나 대다수의 조직 AI 이니셔티브의 가장 초기 단계에 있습니다 Gartner 조사에 따르면 CIO 조사 작년에 CIO 중 단 4 %만이 현재 조직 내 AI가 진행 중입니다 그러나 이것은 빠르게 변화 할 것으로 보인다 향후 2 ~ 3 년 동안 실제로, 그것은 2020 년까지 고려되었으며, 조직의 85 % 이상이 파일럿 프로그램에서 인공 지능 프로그램을 갖게됩니다 또는 동작 모드 일 수있다

왜 그런가요? 글쎄, AI를 채택하기 위해 고객은 많은 도전에 직면 해 있습니다 기술 – 인공 지능을 처리하는 데 필요한 규모는 엄청납니다 운영 관점에서 보면 적절한 전문 지식을 갖춘 인재가 필요합니다 그러나 그 사람들이있는 단체는 거의 없습니다 그들은 희소 한 품종입니다

현재까지 용어로는 매우 좁은 공구 및 도구 제공하고 필요한 옵션 중 많은 전문성 현실적으로 AI는 매우 소수의 사람들의 손에, 아주 소수의 조직 지난 수십 년 동안 그리고 그것들은 심층적 인 계산 능력을 가진 사람들입니다 자원, 훈련 및 전문 지식 기계 학습에서 조직 기술 지향적입니다 따라서 새로운 접근 방식을 채택해야합니다 인공 지능과 같은 기술을 채택하고, 하지만 그렇게하는 것은 운영상의 큰 도전입니다

Google Cloud가 제공되는 곳입니다 Google 클라우드는 Google의 공개 클라우드 컴퓨팅 비즈니스입니다 다양한 제품과 서비스를 제공합니다 AI를 대규모로 제공합니다 그렇다면 왜 AI 용 Google을 선택해야합니까? 우리는 엄청난 규모와 동일한 컴퓨팅 성능을 제공합니다

Google 검색, Gmail,지도, Android 및 기타 10 억 명이 넘는 사용자 오늘 우리는 고성능, 글로벌 인프라를 제공합니다 Google 기술을 활용 한 서비스로서 및 서버, 프로세스 및 사설 광섬유 네트워크, 혁신의 범위와 기술의 품질 Google 데이터 관리, 분석, 인공 지능 클라우드 AI에 대한 맞춤 설정 해결책을 취하기 위해 우리가 취할 수있는 해결책 우리가 혁신을 개발할 실험실 우리 전문 서비스 기능 및 광범위한 비즈니스 파트너 Google이 가지고있는 정보는 조직에 AI 기능 제공 생산성을 향상시킬 수 있습니다 우리는 AI 기계 학습 도구의 스펙트럼을 제공합니다

그리고 당신은 이들 중 일부가 더 발표 된 것을 들었을 것입니다 이 회의 도중 그리고이를 통해 귀사는 귀사의 기능 및 기술 세트, 그리고 고객의 큰 자산에 대한 정보를 제공합니다 한쪽 끝에서 미리 훈련 된 out-of-the-box 모델 사내 전문 기술을 실제로 갖고 있지 않은 회사의 경우 그리고 사전 훈련 된 모델을 사용할 수 있습니다 비전 API, 비디오 API, 비디오 분석, 자연 특정 경험을 제공하는 언어 API 또는 번역 API 귀하의 고객에게

규모의 다른 쪽에서는 구글의 시장을 선도하는 오픈 소스 머신을 가지고있다 학습 엔진 TensorFlow 데이터 과학자가 자신의 모델을 만들어 해결할 수있게합니다 비즈니스 내에서 고객이 직면 한 문제 중간에 서비스 관리를 제공합니다 두 세계의 장점을 제공하는 클라우드 ML과 같은 함께 사용하면 특정 용도로 모델을 사용자 정의 할 수 있습니다

우리의 관리 서비스를 사용하여 테스트, 클라우드에서 모델을 만들고, 훈련하고, 확장 할 수 있습니다 자, 충분 해 당신이 정말로 여기에있는 것은 고객이 누구인지를 듣는 것입니다 해왔다 모든 것을 삶으로 가져 오기 위해서, 나는 절대적으로 소개하고 무대에 오신 것을 기쁘게 생각합니다

Ocado Technology의 책임자 인 Jonty Angel Google Cloud의 좋은 친구입니다 Jonty [박수 갈채] JONTY ANGEL : 고마워 여보세요 니콜 마틴 : 그러니, 존티, JONTY ANGEL : 네

닉 마틴 : – 오카도 사업에 대해 설명해 줄 수 있어요 우리를 위해 Ocado에 관한 모델과 조금? JONTY ANGEL : 물론입니다 그래서 내가 받아 들여야 하나? 고맙습니다 시원한 그래서 첫째로, 여기에서 나를 보내 주셔서 감사합니다

San Fran에 머무르는 것은 언제나 좋습니다 날씨가 믿을만하지 않습니다 나는 그것이 약 36의 정도와 열인 런던에서 들어왔다 파도 그러나 여기에 있으면서 모두와 함께하는 것이 좋다

오늘 아침에와 주셔서 감사합니다 어제 밤 파티 후에 알았어 깨어나서 오전 9시 세션에 오는 것은 쉽지 않을 것입니다 그리고 그 소개에 대해 고마워, 닉 질문에 대답하기 위해 Ocado는 무엇입니까? Ocado의 비즈니스는 무엇입니까? 오카도에 대해 들어 본 손으로 또는 Ocado와 상호 작용 했습니까? 그래 좋아

그래서 그것은 말하고있는 동료들도 의미합니다 다른 세션에서 좋은 일을 해냈습니다 손이 좀있어 누가 전에 Ocado를 사용 했습니까? 그래서 손이 거의 없습니다 그래서 기본적으로 Ocado는 높은 수준에서, 정말 두 사업체의 융합입니다

한편으로는 소매업이 있으며, 당신이 영국에 살았다면, 또는 실제로 그 서비스를 사용했거나 런던으로 왔습니다 밴의 일부를 보았을 때, 당신은 온라인 식료품 슈퍼마켓을 운영한다는 것을 알고 있습니다 우리는 주문을받습니다 그리고 일련의 공급망 활동을 통해, 우리는 사람들의 집에 명령을 내린다 사실, 우리는 그 이상으로 나아갑니다

우리는 부엌에 들어가서 부엌으로 배달합니다 따라서 완벽한 엔드 투 엔드 서비스입니다 식료품 점을 배달 할 수있는 곳 1 시간 단위로 그것이 소매점의 비즈니스입니다 그리고 우리에게는 기술 사업이 있습니다 실제로 실제로 켜기 만하면됩니다

지난 몇 년 동안 공공의 눈으로, 기술 사업은 플랫폼 구축에 중점을 둡니다 소매업에 도움이됩니다 중요한 것은 모두 일어나고있는 학습의 소매 사업에서 모든 특정 고객 요구 사항 및이 실시간 피드백 루프 소매 고객이 상호 작용할 때 얻을 수있는 이점 Ocado 브랜드 여기 당신이 가진 것은이 독특한 융합입니다 놀라운 의견을 가진 두 비즈니스 루프는 실시간입니다

그래서 한쪽 편에서 우리는 배우고 있습니다 우리는 온라인 슈퍼마켓을 가지고 있기 때문에 고객으로부터 그리고 다른면에서 우리는 기술을 구축하고 있습니다 해당 서비스를 지원합니다 그러면 Ocado는 누구입니까? 따라서 Ocado는 세계 최대의 전용 온라인 식료품 점입니다 소매업 자

우리는 600,000 명이 넘는 적극적인 쇼핑객을 보유하고 있습니다 우리는 50,000 이상의 SKU 범위를 가지고 있습니다 자동화 된 4 개의 창고에 걸쳐 그리고 우리는 일주일에 약 25 만 건의 주문을받습니다 따라서 상점이없는 온라인 전용 비즈니스의 경우, 그건 꽤 큰거야 당신에게 이해를주기 위해서 주문 수의, 이것은 그림이다

Sony의 광고를 통해 실제로 샌프란시스코에서 촬영되었습니다 브라비아 그들은 거리로 튀는 공을 많이 내 놓았습니다 그리고 실제로, 그들은 250,000 구슬을 풀었습니다 그래서 당신에게 종류의 종류에 대한 관점을주기 위해서입니다

자동 주문을 통해 일주일 내 주문을 처리합니다 시설 그러고 나서 렌즈를 가져와보고 우리의 기술인 두 번째 비즈니스를 통해 비즈니스, 질문, Ocado Smart Platform이란 무엇입니까? 따라서 이것은 모듈화되고 확장 가능한 소프트웨어 및 하드웨어입니다 플랫폼, 세계 최대의 소매 업체 배치 온라인 그래서 우리는 현재 일부 파트너가 있습니다

당신은 언론에서 보았을 것입니다 지난 1 년 정도에 걸쳐 출시됩니다 누가이 플랫폼에 종사했는지 플랫폼 도움이하는 일은 완벽한 엔드 – 투 – 엔드 서비스 제공 귀하의 소매업을 위해 여기에는 세 가지 주요 활동이 있습니다 우리는 엔드 – 투 – 엔드 플랫폼에 초점을 맞추고 있습니다

첫 번째 활동은 쇼핑 활동입니다 그래서 우리는 고객이 웹 사이트에 올 수 있고 사이트에 참여할 수 있습니다 상점, 즐겨 찾기 추가, 기타 등등, 바구니를 만들어라 완료되면 우리는 그 명령을 이행해야합니다 그래서 우리는 그것을 골라야합니다

우리에게는 자동화 된 시설이 있습니다 또한 매장 내 피킹 시스템도 있습니다 그리고 나서 그 명령이 뽑히고 성취되면, 우리는 고객에게 전달해야합니다 그래서 세 번째 부분은 배달입니다 그리고 그것이 우리가 밴을로드하는 곳입니다

독점 라우팅 시스템과 알고리즘을 사용하면, 우리는 사용자들에게 식료품을 배달합니다 클릭 및 수집 형식의 포털을 통해 제품 이미지에서 볼 때, 플랫폼이 무엇인지 주위를 둘러 보는 것이 훨씬 쉽습니다 이 삼각형으로 나눠보십시오 내가 말했듯이, 당신은 쇼핑을했습니다 삼각형의 상단 절반에서 경험

전자 상거래 활동을 담당합니다 그런 다음 당신은 우리의 성취 삼각형을 효과적으로 가지고 있습니다 또는 그 명령을 수행 할 책임이있는 모듈 그리고 당신은 우리 배달 모듈을 가지고 있습니다, 고객에게 보낼 책임이 있습니다 그리고 그들은 모두 핵심과 함께 개최됩니다

바구니 같은 것들을 책임지고있다 가격 결정 엔진 또는 특정 주문 관리 시스템, 등등, 등등 따라서 플랫폼은 실제로 모듈화되고 확장 가능합니다 또한이 슬라이드가 강조하는 부분은 나는 그들의 현재 능력을 나열했습니다 당신이 전통적으로하는 것들을 둘러싼 이러한 인터넷 공급 체인 시스템 중 하나에서 찾으십시오

또한 앞으로의 기회 사례를 강조했습니다 그래서 플랫폼은 우리는 혁신 할 수 있고 실제로 최첨단에 머무를 수 있습니다 예를 들어, IoT, 로봇 공학, 자율 주행 차량, 그것들은 우리가 관심이있는 모든 영역입니다 우리 플랫폼이 쉽게 참여할 수 있기를 원합니다 Jonty, 기술 플랫폼에 대해 언급하셨습니다

해당 플랫폼에 대한 통찰력을 공유 할 수 있습니까? 부서 및 일부 기계 학습 혁신 고객을 지원하기 위해 Ocado에서 구현 한 기능입니까? JONTY ANGEL : 가능합니다 그래서 그 질문에 대답하기 위해, 먼저, 너에게 줄께 기술 부문이 무엇인지에 대한 아주 높은 수준의 개요 Ocado에서 제가 말씀 드렸듯이, 우리는이 두 사업의 이야기입니다 소매 및 기술

그리고 우리가 설립 한 것은 그것이 단지 하나의 부문 이상이라는 것입니다 사실은 거의 자신의 회사와 같습니다 자체 사업 우리는 Ocado Technology를 보유하고 있습니다

그리고 그것은 소프트웨어 구축에 대한 책임이 있습니다 그게 Ocado의 힘 이네 그래서 우리는 Ocado Technology에서 일하는 1,000 명이 넘는 사람들이 있습니다 그리고 그 사람들의 절반 이상 컴퓨터 과학자, 엔지니어, 데이터 전문가, 기계 학습 전문가 그래서 우리는 이러한 기술을 가진 사람들에게 투자했습니다

우리 사업의 측면을 구축 할 수 있습니다 우리는 또한 유럽 사무소가 있습니다 우리는 폴란드에 개발자가 있습니다 우리는 실제로 거기에 두 개의 사무실을 가지고 있습니다 크라코프와 브로츠와프

바르셀로나에 사무소가 있습니다 그리고 불가리아에 소피아에 사무소가 있습니다 따라서이 사무실은 최초의 기술 사무소이며, 플랫폼 구축 그리고 우리 개발의 대부분은 영국의 하트 필드에서 일어납니다 Ocado Technology의 뒤편에는 정말 3 가지 핵심 원칙 원활한 경험을 쌓을 수있는 우리 고객을위한 플랫폼입니다 그것은 직관적이고, 효율적이며, 편리합니다

그래서 내가 직관적으로 말하고자하는 것은 우리의 웹 쇼핑 경험 또는 쇼핑 경험 매우 사용하기 쉽습니다 그래서 우리가 만드는 모든 것이 사용하기 쉬워야합니다 고객이 즉시 액세스 할 수 있어야합니다 실력 있는 우리가 일을 빨리하고 많은 일을해야하기 때문에 주문을 따기, 포장하기, 배달하기, 분류, 모든 종류의 이러한 운영 프로세스, 전반적으로 우리는 효율적이어야합니다

그래서 우리는 효율적으로 규모면에서 효율적이어야합니다 그리고 실제로 비디오가 있습니다 최신 창고 중 하나를 보여 드리겠습니다 우리가 우리를 도울 수있는 로봇을 어떻게 만들고 있는지 보다 자동화되고 효율적입니다 그리고 편리합니다

글쎄, 나는 배달 드라이버 중 하나에 대한 사진을 가지고있다 그리고 이것이 실제로 의미하는 바는 우리가 필요로하는 것입니다 그렇지 않은 소프트웨어 및 응용 프로그램을 빌드하는 그냥 위대하고 빠르며 시장에 나와 있습니다 신속하게 고객의 손에, 그리고 혁신적인 그들은 편리하고, 사용하기 쉬우 며, 편리해야합니다

직원들이 이해할 수 있도록 그래서 배달 드라이버가 문에 도착하면, 그들이 생각하고있는 첫 번째 일 사용자에게 훌륭한 경험을 제공하는 것입니다 기술에 매달리지 않아야합니다 따라서 기술은 그들에게 도움이 될 필요가 있습니다 그들이 일을 할 수 있도록 이것이 우리의 원칙 중 하나입니다

우리는 사람들이 쉽게 사용할 수 있도록 권한을 부여해야합니다 기술 자, 이러한 원칙을 달성하기 위해, 당신은 많은 백엔드에 투자해야합니다 기술, 많은 역량 그리고 Ocado가 수년 동안 해왔 던 것 – 실제로, 시작부터 – 이 부서들에 투자했습니다

우리는 일하고있는 많은 사람들이 있습니다 자동화 및 로봇 공학 분야 Google은 기계 학습, 모바일 앱 전문가를 보유하고 있습니다 개발, 라우팅 시스템, 데이터 과학, 클라우드, 비전 시스템, 시뮬레이션 내 창고 한 곳을 걸 으면, 당신은이 모든 것들이 서로 상호 작용하는 것을 보게 될 것입니다

이것이 기술 사업이라는 통찰력을 제공합니다 너는 그게 핵심이야 Nick의 요점과 이야기하기 위해, 우리를 위해, 우리는 기계 학습과 같은 기술에 막대한 투자를해야합니다 기본적으로 클라우드 기술을 사용하는 방법에 대해 설명합니다 우리는 Google, 그 투자가 우리에게 중요하기 때문에 혁신을 유지하고있는 다음 단계는 최첨단을 유지하고 새로운 시스템을 제공하며, 그 지능적인 개인화 된 경험을 구축하십시오

그리고 그것이 우리가되고 싶은 곳입니다 따라서 비즈니스로서 우리는 우리의 문화에서 이것이 우리가 앞으로 나아갈 수있는 방법입니다 여기에 비디오를 보여 드리고자합니다 플랫폼의 영역 중 하나 인 매우 인상적이라고 생각합니다

기본적으로 주문이 배달 될 준비가되면, 우리는 우리의 라우팅 시스템을 인계받습니다 주문을 내려야 할 곳을 파악하는 그리고 어떤 순서로 그리고 특별한 밴으로 그걸 거기로 데려 갈거야 여기서 실제 데이터를 기반으로 한 시뮬레이션을 볼 수 있습니다 사실은 그리고 그것은 하루 종일 지속되고 있습니다

당신이 볼 수있는 것은 모든 작은 핀 방울입니다 실제로 완료된 주문입니다 따라서 주문이 전달되면 작은 방울처럼 불이 붙는 것을 볼 수 있습니다 우리는 아마도 시뮬레이션에서 정오 경에있을 것입니다 또는 1:00 PM 런던이 약간의 핵을 얻는 곳, 저기서 활동을 볼 수 있습니다

그리고 다른 활동의 큰 패치 우리의 자동화 된 서비스 센터, 당신은 실제로 Dawdon을 볼 수 있습니다 우리는 거기에 큰 센터가 있습니다 Andover, 우리에게는 또 다른 것이있다 그러기 위해서, 우리는 투자해야합니다 기본적으로 우리에게 줄 수있는 알고리즘으로 지리 정보를 통한 가장 효율적인 라우팅 그 명령을 전달합니다

저쪽에있는 링크로 갈 수 있습니다 특정 라우팅 시스템에 대해 자세히 알아보십시오 내가 보여주고 싶은 두 번째 비디오 우리의 창고에서 우리의 최신 기술입니다 죄송합니다 내가 다시 가게 해줘

나는 그것을 클릭해야한다고 생각한다 오 [음악 재생] Andover Performance Center입니다 Oop Andover는 런던 남서쪽에 있습니다

그리고 여기서 볼 수 있듯이, 이것은보기입니다 그리드 또는 하이브 구조의 맨 위에서, 고밀도 스토리지 시스템입니다 그리고 당신이하는 일은 당신이 그리드를 바라 보는 것입니다 그리고 축구 경기장의 크기를보고 상상해보십시오 말 그대로 당신은 1,000 대가 넘는 로봇을 가지고 있습니다

이 그리드 위에서 다른 활동을하고 있습니다 그래서 로봇이하는 몇 가지 활동 제품이 공급 업체로부터 하이브로 가져온 경우, 기본적으로 포장을 풀고 배치하는 로봇 활동이 있습니다 그리드에 다른 활동들이 제품을 가져오고 있습니다 우리는 따기 통로가있는 그리드 영역으로 그리드 내에서 실제로 터널을 골라야합니다

제품을 배치하는 사람들이 있습니다 다른 바구니와 다른 종류로 그리고 로봇의 또 다른 기능은 그것은 실제로 내가 가장 지적이라고 생각하는 것입니다 모든 교대가 끝날 때 봇이 돌아갑니다 특정 알고리즘 또는 알고리즘 집합 그 (것)들은 그들이 가사를 할 수있게 해주고, 다음 주문 세트를 위해 그리드를 준비합니다

그래서 효과적으로 일어나는 것은 우리입니다 그리드에 항상 재고가 있는지 확인할 수 있습니다 올바른 장소에서 명령을 내린다 다음 배달 세트를 효율적으로 수행 할 수 있습니다 크기에 대한 아이디어를 얻을 수 있기를 바랍니다

그리고 그들은 뒤에서 충전소입니다 기본적으로, 봇이로 이동합니다 닉 마틴 : 꽤 인상적입니다 나는 그 DC를 방문하는 즐거움을 실제로 누 렸습니다 그리고 네가 말한다면 나는 말할 필요가있다

가서 방문 할 수있는 기회를 얻으십시오 가장 인상적인 설정과 많은 재미입니다 그럼, 존티, 우리를 데려 갈 수 있니? 어떻게 지내니? 기계 학습이 직접적으로 이루어지는 방법에 대해 우리를 데려 갈 수 있습니까? 고객에게 더 나은 구매 기회 제공 경험과 서비스? JONTY ANGEL : 네 먼저 고객에게 무엇이 이익이되는지 소개하기 위해, 우리가 바라는 세 가지 핵심 영역을 공유하고 싶습니다 하루 하루를 개선하는 것이 가장 좋습니다

우리는 인도가 제 시간에 이루어질 수 있도록해야합니다 정시에 배달하는 것이 더 중요합니다 그게 기대이기 때문에 다른 어떤 것보다 고객의 두 번째는 훌륭한 유통 기한입니다 따라서 모든 제품에 훌륭한 선반이 있는지 확인해야합니다 그들이 만료되기 전에 삶을 살 수 있도록 그리고 실제로, Ocado는 그것에 삶의 약속을 가지고 있습니다

그리고 거의 대체 할 수 없습니다 그래서 당신이 주문할 때, 당신이 주문한 제품을 원한다 다른 제품의 전체 목록을보고 싶지는 않습니다 우리는 거기에 던져 버렸습니다 주문한 제품이 필요합니다

따라서 우리의 공급망 시스템은 적절한 재고가 있는지를 효율적이고 정확하게 오른쪽 창고에 소매업 자에게 이익이된다면, 우리가 기술을 개발하는데 집중하지 않는다면, 그 때 그것은 많은 위험을 감수합니다 그들은 사업 운영에 효과적으로 집중할 수 있습니다 그래서 우리에게 발전 기회를줍니다 소매 업체가 혜택을 누릴 수있는보다 지능적인 시스템 예를 들어, 이점 중 하나는 낭비가 적다는 것입니다

고객의 여정에서, 우리는 제품을 제공하는 다른 메커니즘을 가지고 있습니다 여행을하는 동안 어쩌면 낭비 될 제품들 고객 여정에서 다시 제공 될 수 있습니다 고객을 아는 다른 사람이 있습니다 나는 나중에 조금 이야기 할 것이다 우리가하는 커스터마이징을 둘러싼 기계 학습을 통해 더 나은 이해를 얻으십시오

이전 주문을 기반으로 한 고객의 요구 사항 보다 개인화 된 경험을 제공 할 수 있습니다 그리고 여기에 몇 가지 다른 것들이 있습니다 이는 소매 업체가 얻는 전반적인 혜택을 더합니다 우리 플랫폼을 사용하지 못하게합니다 그래서 구체적으로, 당신의 질문에 대답하기 위해, 간단히 강조 할 두 영역 우리는 긍정적 인 영향을주는 기계 학습을 사용했습니다

고객 경험과 플랫폼 사기 탐지 및 사용자 정의에 사용되었습니다 그래서 여기에 작은 따옴표가 있습니다 왜 우리가 기계 학습을 사용하고 싶은지에 대한 동기를 공유합니다 사기 탐지 용 그리고 그것은 정말로 전부였습니다

어떻게 할 수 있습니까? 우리는 속도와 적응력이 있습니까? 우리가 인간이라면 사기성 활동을보고 시도하다 평가와 예측을 할 때 일어날 일 사기범들이 효과적으로 그들이 일하는 방식을 바꾼다 우리가 유지해야 할 부분이 정말로 필요합니다 그들과 함께 그래서 우리가 느낀 것은 이것이 완벽한 사용이라는 것입니다 기계 학습을위한 사례입니다

기계가 그렇게하도록하십시오 그리고 배경에 충분한 데이터가 있다면 엔진에 동력을 공급하기 위해 더 지능적이되고 어떻게 이해할 수 있을까요? 사기성 행동을 찾아 내기 사실, 제 동료들은 이것에 대해 좀 더 이야기했습니다 다른 세션에서 나는 그것이 어제다고 생각한다

더 기술적으로 설명하는 동영상이 있습니다 우리가 여기서 뭘하고 있는지 그러나 높은 수준에서 우리가 사용하고있는 데이터 세트 과거 주문, 이전 사기 사례, 과거 배달, 바구니 비용, 주문 항목 그래서 누군가가 효과적으로 존재한다면, 매일 아침 새벽 9시에 나도 몰라 술 마시고 그들은 단지 이러한 무작위 배달 장소에 배치되고, 사기 행위라고 생각할 수 있습니다

그러나 강력한 것은 이러한 모든 데이터 세트를 함께 사용하는 것입니다 당신은 새로운 트렌드를 얻고 새로운 아이디어를 얻습니다 그리고 당신은 실제로, 처음으로, 사기성 활동보다 앞서 나가십시오 사기로, 재미있는 무엇이, 우리의 고객 여행에서, 실제로, 우리는 사기 탐지를합니다 그 고객 여정의 프론트 엔드에서 그래서 효과적으로 쇼핑을 시작하기 위해 사이트에 입장 할 때, 우리는 이미 사기 수표를 조사하고 있습니다

사기 행위를 평가하기 시작했습니다 그 이유는 우리가 그 후에 일어나는 일이 사기가 아닌지 확인하십시오 우리가 사용하는 도구 중 일부는 정말로 Google Cloud의 전체 스택을 사용해보십시오 그래서 우리는 ML Engine, BigQuery, Cloud Storage, 및 TensorFlow 그리고 이것은 정말로 큰 프로젝트입니다

지금 우리 사업에 종사하고 있습니다 이 다이어그램은 전체 데이터 흐름을 제공합니다 마지막 섹션은 맞춤 설정입니다 다시 말하자면, 엔드 투 엔드 고객의 여정을 살펴보십시오 주문을 시작하면 쇼핑을 시작합니다 주문을 준비하고 나서 주문 완료까지 간다

체크 아웃 할 때, 우리가 발견 한 것은 진짜 방법입니다 고객에게 영향을 미치는 것은 그들을 보여주는 것이다 고객의 여정 끝에있는 것들 그것은 놀라운 경험을 할 수있게 해줄 것입니다 이제 기계 학습을 사용하여 작업을 수행 할 수 있습니다 우리가 그것을 고용 한 방식 때문에 우리는 고객에 대해 더 많이 알게됩니다

이전 주문 및 즐겨 찾기를 기반으로 그래서 우리는 체크 아웃의 마지막 페이지에서 그것들을 제공 할 수 있습니다 그들은 반드시 그들이 제공 될 수 있다고 생각하지 않을 것입니다 예를 들어 우리가 제공하는 페이지가 호출됩니다 다 떨어 졌니? 그리고 그것은 제가 언제나, 매 3 주마다, 접시 닦는 태블릿을 사다 그리고 나는 그 세 번째 주에 도착한다

지금 내 바구니를 완성한 곳 시스템에서 내가 가지고 있지 않은 것을 식기 세척기 태블릿, 나에게 알려줄거야 네가 이걸 다 쓰 다니? 이것들을 사기를 기대합니까? 놀라운 서비스입니다 그걸 내 바구니에 추가 할 수 있다면 그것을 보지 않고도 내 순서대로 그 후 오는 좌절, 나는 매우 행복한 고객이 될 것입니다 고객에게 이익이됩니다 제품에 불편을 겪지 않도록하는 것입니다

그들이 가게에서 나간다 그들이 그것을 잊어 버렸기 때문에 그래서 그들은 목적을 위해 상점을 운영하고 있습니다 때로는 나가는 제품도 있습니다 소매업자를 위해, 이것은 다량으로 유리하다

소매상이 더 큰 바구니를 만들려고하기 때문입니다 고객이 모두 행복하다는 것을 확인합니다 바구니의 크기가 커지고있다 그 필수 항목 그리고 다시 Google Cloud의 상당 부분을 사용합니다

이 기계 학습 엔진을 만드는 것 그래서 그것은 제가 오늘 취재하길 원했던 것입니다 그리고 내가 당신의 질문에 대답했기를 바랍니다 닉 마틴 : 그렇게 믿습니다 고마워, 존티

그게 음, 네가 할거야 나에게 동의해라 Ocado 비즈니스에 대한 환상적인 통찰력 모델 및 기술 및 기계 학습을 사용합니다

그래서 대단히 감사합니다 조티 천사 : 기쁨 닉 마틴 : 모두 참석해 주셔서 감사합니다 [박수 갈채] JONTY ANGEL : 고마워 [음악 재생]

Google offers to leave robocallers hanging on the telephone

EU의 콘텐츠 필터에 대한 새로운 대응으로 Google은 스팸없는 거품으로 사용자를 보호하는 최고의 콘텐츠 필터를 개발하고 있습니다 Android에 내장 된 불편 발신자 감지 기능으로 의도하지 않은 결과가 발생할 수 있습니다

최근에 안드로이드 오픈 소스 프로젝트 (AOSP)에 위탁 된이 기능은 "실시간 오디오 녹음 및 빠른 응답으로 원치 않는 전화를 화면에 표시" 커밋은 XDA에서 날카로운 아이드 devs에 의해 여기에 목격되었다 많은 전화 앱에는 이미 블랙리스트 기능이 포함되어 있으며 Drupe 및 Truecaller와 같은 제 3 자 전화 앱은 발신자 번호를 사용하여 원치 않는 전화를 차단합니다 그러나 이것은 다르다 실시간 AI는 Android AOSP 전화 판매점에 배치되어 발신자가 로봇인지 여부를 감지합니다 AI가 컴퓨터가 사용자에게 전화를 걸 었음을 감지하고 컴퓨터와 통화하고 싶지 않으면 전화 응용 프로그램이 전화를 끊을 수 있습니다

두려움을 완화시키기 위해 개발자는 오디오 파일을 제안하고 녹음 내용을 장치에 남겨 둡니다 Google은 이미 픽셀 폰에서 발신자 정보를 묻지 않고도 알 수없는 번호를 입력합니다 구글은 공개적으로 이용 가능한 정보원으로부터 정보를 추출한다고 말했다 이는 Google을 세계에 대한 실질적인 디렉토리 문의 서비스로 간주합니다 그러나 거부 기능은 더 많은 질문을 제기합니다

여기에서는 플랫폼 자체가 Drupe와 같은 타사 앱 (선택 사항)이 아닌 필터 버블을 생성합니다 플랫폼은 누가 사용자에게 도달했는지 식별합니다 편리함에 사로 잡혀 누가 알려지지 않은 발신자에게서 다시 전화를 받겠습니까? 그리고 온보드 인공 지능은 Google의 자체 로봇 발신자를 검색 할 수 있습니까? 그렇다면 해당 로봇을 허용 목록에 포함시킬 것입니까? Google은 최근 로봇 – 인간 전자 상거래 시스템 인 Duplex를 시연했습니다 마운틴 뷰 (Mountain View)는 인간이 로봇이 아니라고 생각하도록 로봇을 연설하기 위해 로봇 연설에 주저했다 전화 앱의 실시간 인공 지능도 속지 않을까요? 안드로이드가 모바일 OS 시장의 80 % 이상을 즐기고 있다면, 아마도 지금까지 얻은 유일한 로코 콜은 구글의 것이다

어떤 것이 좋을까요? Android Dialer의 통화 중 기능에 대한 코드는 여기에서 찾을 수 있습니다 ®

The ‘father of the internet’ on Google, war and ‘artificial idiocy’

"인터넷의 아버지"중 한 사람인 Vint Cerf는 이번 주에 호주에있었습니다 Vint Cerf는 3 피스 슈트와 턱수염으로 "인터넷의 아버지"(또는 적어도 "아버지"중 한 명)에 대한 할리우드의 아이디어처럼 보입니다

Robert Cahn과 함께 Cerf 박사는 그 제목을 주장 할 수 있습니다 그는 1970 년대에 인터넷의 기본 아키텍처를 구축하는 것을 도왔습니다 – 컴퓨터가 서로 이야기 할 수있게하는 전송 프로토콜을 만듭니다 – 프로젝트가 여전히 군대에 의해 자금 지원을 받았을 때 오늘날, 군대와의 관계는 Google에 문제를 일으키고 있습니다 Cerf 박사는 현재 "Chief Internet Evangelist" 5 월 말 뉴욕 타임즈는 구글이 비디오를 평가하기 위해 인공 지능을 이용하는 것을 목표로 삼고있는 미 국방부의 메이븐 프로그램과의 연계가 내부적으로 "실존 적 위기"를 낳았다 고 보도했다 직원들은 사기를 쳤고 무언가 두려움이 무인 항공기 공격을 용이하게하기 위해 사용될 수있는 작업에 도덕적으로 반대했습니다 약 4,000 명의 근로자가 "구글도 계약자도 전쟁 기술을 만들지 않을 것이라는 명확한 정책"을 요구하는 청원서에 서명했습니다 6 월까지 Google의 CEO 인 Sundar Pichai는 회사의 인공 지능 업무를 안내하기 위해 7 가지 원칙을 발표했으며 "주요 목적이나 구현이 사람들의 부상을 유발하거나 직접적으로 촉진시키는 무기 또는 기타 기술을 추구하지 않겠다고 약속했습니다

" Google은 국방부와 Maven 계약을 갱신하지 않습니다 인터넷 선구자 인 ARPANET (Advanced Research Projects Network)는 1969 년에 첫 번째 메시지를 보냈습니다 네트워크의 초기 반복 작업은 1980 년대 후반까지 학계와 군대에 주로 할당되었습니다 수십 년 후, 인터넷 공동 설계자는 그의 항의하는 동료 중 일부보다 회사의 최근 연구에 더 익숙한 것으로 보인다 "Maven 프로젝트의 목적은 어쨌든 그것을 이해했기 때문에 상황 인식을 통해 볼 수있는 것을 이해할 수있었습니다 즉 시야에 차량이 있습니까? 세르 프 박사는 ABC 방송과의 인터뷰에서 "뉴 사우스 웨일즈 대학 (University of New South Wales)의 청중에게 말했다 "아직 초기 단계라고 생각하지만, 프로젝트를 시작하기 전에 프로젝트를 평가할 감독위원회를 설립하여 위험성 평가의 정도를 평가하는 것이 목적입니다"라고 나중에 설명했습니다 Cerf 박사는 "킬러 로봇"과 무기 알고리즘에 대한 두려움에도 불구하고 때로 인공 지능 (artificial intelligence)이 " "나는 항상 조금 회의적이었다고 말할 수있다"고 말했다

현재 그는이 시스템이 여전히 종종 "부서지기 쉽다" 그들은 능력이 깊고 좁고 인간의 능력과 일치하지 않습니다 예를 들어 당신이나 내가 테이블이 무엇인지 알게되면, 지구의 중력 표면에 수직 인 평면 위치를 테이블로 사용할 수 있다는 것을 알기 시작합니다 "무릎, 의자, 실제 탁자,이 무대"라고 그는 말했다 "몇 가지 예에서 우리는 표의 개념을 일반화했습니다 인간은 이것을 정말로 잘합니다 컴퓨터는 이것을 잘 수행하는 방법을 모릅니다 "실제로 Cerf 박사는 너무 많은 인터넷 운명과 우울함을 존중하지 않을 것입니다

연방 통신위원회 (Federal Communications Commission)가 최근 막대한 중립으로 보았던 미국의 망 중립성 철회 외에도 그는 인터넷 생태계가 활기차게 남아 있다고 제안했다 그리고 인터넷의 부모는 기술 불안에 사로 잡혀 있지 않습니다 "우리가 살고있는 것이 20 세기 전반이나 20 세기 후반에 일어난 것보다 더 외상적이거나 극적이라고 나는 확신하지 못한다"고 그는 제트기와 텔레비전을 가리켜 말했다 라디오 그럼에도 불구하고,이 미래는 많은 안식을 포함하지 않는 것처럼 보입니다 Cerf 박사는 앞으로 수십 년 간 생존하기를 원한다면 평생 교육이 필수적이라고 제안했다 (그는 현재 미생물학에 깊이 빠져있다) "80 년 동안 기술적 변화가 일어나 학교를 다녔을 때와는 세상이 크게 다르게 보일 것이라고 확신한다"고 그는 ABC와의 인터뷰에서 말했다

How to Install Mycroft AI on a Raspberry Pi

안녕 모두, 배 승무원을 환영합니다 오늘 저는 어떻게 할 것인가를 보여 드리겠습니다

Mycroft AI를 Raspberry Pi에 설치하십시오 그래서 당신을 모르는 사람들을 위해 Mycroft AI는 Google 홈이나 Amazon Alexa와 같은 개인 비서이지만 또한 공개 소스이기 때문에 코드를 검토하고 변경할 수 있습니다 기호 그리고 그것이 발생하면 Raspberry Pi에 설치하는 것이 정말 쉽습니다 정확히 우리가 먼저해야 할 일입니다

이 프로젝트를 위해서 우리는 특히이 두 가지가 빠르기 때문에 Raspberry Pi는 구체적으로 모델 2 또는 모델 3입니다 Mycroft를 돌릴만큼 충분합니다 또한 8 기가 바이트 이상의 마이크로가 필요합니다 SD 카드, 아날로그 스피커 세트 및 USB 마이크가 있습니다 USB가없는 경우 마이크가 있지만 웹캠이 있으면 대신 웹캠을 사용해 보거나 사용할 수 있습니다

그래서 소프트웨어 측 우리는 SD 카드 이미지 버너 인 에셔가 필요할 것입니다 우리는 Mycroft 이미지를 SD 카드에 쓰려고합니다 네가 가지고 있지 않다면 그것은 진행하고 그것을 다운로드, 나는 아래의 설명에 링크가 있습니다 그리고 Mycroft AI github으로 가서 picroft를 다운로드하고 싶습니다 이미지, 나는 또한 아래의 설명에 링크되어 있습니다

일단 당신이 그냥에 처를 열고, 계속해서 선택하고 이미지 선택을 클릭하십시오 Picroft를 압축 해제 한 위치로 이동합니다 영상 그런 다음 SD 카드를 두 번 클릭하고 플래시를 누릅니다 일단 깜박이는 프로세스가 완료되면 컴퓨터에서 SD 카드를 분리하고 삽입하십시오

너의 나무 딸기 파이로 그런 다음 라즈베리 파이를 아날로그 스피커에 연결하고 또한 USB 마이크를 연결하십시오 다음과 같이 이더넷 케이블을 사용하려는 경우 귀하의 라즈베리 파이 또한 플러그를 꽂은 다음 라즈베리 파이의 전원을 켭니다 타고있다 PI와 Wi-Fi를 사용하려는 경우 키보드 및 화면을 Pi에 연결하여 Wi-Fi를 구성하십시오 도대체 무엇이 케이스, 결국 라스베리 파이가 mycroft 이미지를 부팅하고 필요한 모든 업데이 트를 만들었습니다, 그것은 스피커에서 코드를 재생 시작합니다 가끔씩

이제 다음으로하고 싶은 것이 있습니다 homemycroftai로 가서 계정으로 로그인하거나 가지고 있지 않으면 로그인하십시오 하나를 만든 다음 장치가있는 곳으로 향하십시오

이제 보시다시피 나는 이미 장치가 있지만 여기에 장치를 추가하지 않으면 귀하의 라스베리 파이가 스피커를 통해 연주하는 등록 코드 그때 여기서 Pycroft를 선택하고 Mycroft 장치의 이름을 지정하고 Mycroft라는 이름을 당신이 원한다면 몇 가지 다른 설명과 확인을하자 페어 모든게 간다면 당신은 한 쌍의 장치를 갖게 될 것입니다 이제 나는 이미 짝을 지어서 돌아가겠습니다 이제 기기를 페어링하면 기기 탭에 표시됩니다

가기 그리고 라스베리를 클릭하십시오 여기에서 설정을 수정할 수 있습니다 Mycroft가 이전에 입력 한 장소와 위치를 입력하면 날씨와 다른 것들 이제 당신은 모두 준비되어 있고 놀 수 있습니다 마이 크로프트

마이 크로프트, 몇 시죠? 이봐, 마이 크로프트는 노래 부른다 안녕 마이 크로프트는 나에게 농담을 말한다 그리고 이것들은 단지 일부입니다 Mycroft가 사전 설치되어 제공되는 몇 가지 간단한 명령 중 하나입니다 너라면 Mycroft가 다른 멋진 기술을 수행하도록 다른 기술을 설치하는 데 관심이 있습니다

mycroft 기술 설치에 대한 다른 비디오를 보냅니다 그래서 이것은 이것을위한 것이 었습니다 비디오, 나는 너희들이 그것을 즐기기를 바랍니다 우리에게 엄지 손가락을 줘야한다 더 멋진 콘텐츠를 구독했는지 확인하고 다음 동영상

Actions on Google: Building Apps for Assistant

[음악 재생 중] 사칫 미슈라: 안녕하세요 저는 사칫 미슈라입니다 오늘 저는 APIAI를 이용해 Google 어시스턴트이 앱을 만드는 것이 얼마나 쉽고 빠른지 보여드리려고 합니다 이 앱들은 Google 홈이나 조건이 맞는 모바일 기기의 어시스턴트에 접속 가능한 사람이라면 누구나 사용할 수 있습니다 이 영상에서 저는 어시스턴트 앱을 만들 것입니다 GitHub에 있는 'Google에 대한 사실'에 관한 예시와 비슷하죠 'Google에 대한 사실' 예시는 사람들에게 Google의 역사에 관한 사실이나 본사에 관한 이야기 등 사용자가 관심있어 하는 이야기를 해줍니다 하지만 여기에서 끝나지 않고 사용자는 개발자 사이트에 가서 그 예시들을 더 개발할 수도 있고 사용자가 잘 아는 분야에 대한 사실을 추가할 수도 있습니다 고양이나 뜨개질 같은 것들을 말이죠 이제 API

AI 도구에 가서 이것을 어떻게 만드는지 처음부터 살펴보도록 하죠 먼저, 액션 콘솔에 로그인 하고 프로젝트 추가를 클릭합니다 이름을 설정하면 새로운 프로젝트가 만들어집니다 액션 콘솔은 시작점입니다 어떤 새로운 어시스턴트 앱을 만들든지요 여기에서 개발 도구를 설정하면 분석 도구와 테스트 도구들에 접속할 수 있습니다 그리고 앱에 대한 디렉터리 정보를 입력하는 양식도 제공합니다 여기에서 우리는 APIAI를 사용하거나 저희의 NLA와 함께 가공되지 않은 액션 SDK를 사용할 수 있고 또는 자연 언어를 이해 솔루션을 사용할 수 있습니다 APIAI를 선택해 볼게요 APIAI에 로그인 됐습니다 그리고 에이전트가 만들어졌습니다 APIAI 에이전트는 사용자의 상품 또는 서비스를 위한 NLU 모듈입니다 API

AI의 에이전트는 어시스턴트를 위한 앱을 지정해 줍니다 그러면 이 영상의 목적에 따라 그것들이 동일한 것을 지칭한다고 생각합시다 에이전트를 만들고 나면 인텐트 화면이 뜹니다 인텐트와 엔티티는 2개의 중요한 개념인데 APIAI에서 상호작용하는 시나리오를 만들 때 중요합니다 인텐트는 대화를 시작하는 지점이고 사용자들의 대화 경험이 어떻게 나타나야 하는지에 대해 방향을 잡아줍니다 사용자가 자신이 원하는 것에 대해 여러 방식으로 말할 수 있지만 결국 모두 하나의 인텐트를 통한 동일한 대답을 받아야 합니다 대화는 사용자들의 답변을 인텐트로 끊임없이 정리하는 과정이라고 할 수 있습니다 저희 앱이 이미 기본 대비책 인텐트를 갖고 있다는 점을 기억하세요 이것은 사용자들이 말하는 것을 앱이 인식하지 못할 때 사용됩니다 기본 환영인사 인텐트도 있습니다 이것은 사용자가 처음 왔을 때 사용된다는 점에서 대화의 시작점을 의미합니다 이미 만들어진 환영 인사를 지우고 여러분만의 인사를 설정해 봅시다 "Google에 관한 사실에 오신 것을 환영합니다 Google의 역사 Google 본사 중 어느 것을 듣고 싶으십니까" 같은 인사를 할 수 있습니다 이를 통해 사용자를 알 수 있고 저희의 어시스턴트 앱을 Google 어시스턴트와 분리해서 생각할 수 있습니다 또한 다음 대화로 사용자를 이끌 수도 있습니다 여기에서는 '양자택일' 질문을 사용해 보겠습니다 여러분의 명령어는 모두 앱의 성격을 결정한다는 것을 기억하십시오 이는 훌륭한 대화 경험을 만들기 위해서 아주 중요합니다 다음 인텐트로 넘어가기 전에 몇 가지 수동 설정 엔티티를 만들어야 합니다 엔티티는 사용자들이 그들의 자연 언어로 명령을 내릴 때 사용하는 다양한 표현들을 묶어놓은 것입니다 엔티티는 인텐트의 논리가 받아들일 수 있는 표현들의 한계를 설정합니다 APIAI에는 두 종류의 엔티티가 있습니다 첫번째는 미리 설정되어 있는 시스템 엔티티로 자주 쓰이는 표현들을 다룹니다 시간, 숫자, 주소, 자료 등을 말이죠 두번째는 개발자 엔티티입니다 우리는 이것을 여기에 사용할 것입니다 저는 APIAI 웹 콘솔을 사용해 개발자 엔티티를 만들 것입니다 하지만 여러분은 JSON 또는 CSV 형식 파일들을 업로드하거나 API 콜을 통해 사용할 수 있습니다 먼저 시작하기 위해서 'Google에 대한 사실'의 두 종류의 사실에 대해 알아야 합니다 '과거'라고 표현될 수도 있는 '역사'와 HQ라고도 하는 '본사'입니다 다 끝내고 나면 이렇게 될 것입니다 다음으로 사용 사례를 위한 인텐드를 만들 겁니다 저희의 어시스턴트 앱이 도움을 주고 사실을 이야기해줄 겁니다 'tell_fact'라는 인텐트를 만들고 사용자가 사실을 듣기 위해 물어볼 질문의 몇 가지 예시를 추가합니다 우리는 사용자가 시작화면에서 주어진 환영 인사 인텐트에 인사할 것을 예상할 수 있고 아니면 다른 사실에 대해 물어볼지도 모릅니다 이미 사실 하나를 들은 후에 말이죠 또 그들은 단순히 '역사'라고 말하거나 혹은 더 복잡하게 '구글의 역사에 대해 알아보고 싶어' 라고 할지도 모릅니다 새로운 예시들을 입력하면 그 예시들이 fact-category 엔티티로 주석이 자동으로 달리는 것을 볼 수 있습니다 이것은 사용자가 구문에 엔티티 값을 직접 제공해서 이 인텐트가 실행되도록 할 수 있다는 의미입니다 우리는 이런 주석, 파라미터의 이름 그리고 엔티티가 우리의 예시에 적용되도록 바꿀 수 있습니다 APIAI는 주석의 예시와 엔티티를 보고 배울 것입니다 더 다양한 요구들을 이해하기 위해 말이죠 예시를 좀 더 추가해 보죠 사용자가 이 인텐트에 어떻게 작용할지에 대해서요 "Google HQ에 대해 말해줘" "Google의 역사에 대해 알고 싶어" "Google 본사에 대해 말해줄 수 있어?" "Google에 대해 말해봐" 대개는 10~12개의 예시를 제공하고 싶을 겁니다 사용자가 뭐라고 말할지에 관해 다양하게 API

AI를 교육시키기 위해서 말이죠 마지막 문장은 fact-category 엔티티에 포함되지 않는다는 것을 기억하세요 트리거링 문장에서 카테고리는 항상 명시되지 않는 APIAI를 나타내줄 뿐이죠 여기 아래에 asfact라는 인텐트를 위해 액션을 입력해 보겠습니다 그리고 이건 제 비지니스 업무를 작동시킬 겁니다 관련된 답변을 얻기 위해서요 참고로 APIAI에서의 액션은 Google에서의 액션과 다르다는 것을 아셔야 합니다 그리고 우린 다시 fact-category 파라미터가 자동적으로 생성되는 걸 볼 수 있습니다 주석의 예시로부터 말이죠 이 인텐트는 단 하나의 파라미터를 가집니다 그치만 여러분은 이 하나가 전체의 묶음을 가질 수 있단 걸 상상해 볼 수 있습니다 레시피 찾기 인텐드같이요 재료 목록과 식사 종류가 필요할지도 모르는 것처럼 말이죠 'Google에 대한 사실'은 사용자가 원하는 카테고리를 모르면 사실을 이야기 할 수 없습니다 그렇기 때문에 저는 이 파라미터를 표시할 겁니다 그리고 명령을 추가해보겠습니다 'Google에 대한 사실'은 이 명령들을 사용할 겁니다 인텐트를 작용하게 하기 위한 구절이 바로 제공되지 않을 때 놓친 정보를 요청하기 위해서 말이죠 예를 들어 사용자가 구글에 대한 사실을 달라고 말할 때 같은 경우에 말입니다 여러분은 하나의 명령 이상을 추가할 수 있습니다 각각의 파라미터에 다양하게 추가할 수 있는 거죠 우리의 명령은 여러분이 무엇을 듣길 원하는지와 관련됩니다 구글의 역사나 그 본사에 대해서요 이제 간단한 사실을 하드코어해보죠 예를 들어 Google은 1998년에 설립됐다 같은 거요 우리는 이제 이 인텐트를 APIAI 시뮬레이터에 바로 시험해 볼 수 있습니다 우리가 만든 문장을 시험해 보죠 "Google에 대한 사실을 말해줘" 인텐트가 일치하는 걸 볼 수 있습니다 그리고 fact-category 파라미터를 위한 명령을 얻을 수 있습니다 트리거링 구절에서 제공되지 않았거든요 응답 후, 우리는 하드코드된 답변을 받게 됩니다 여기예요 하지만 우리의 실제 답변은 달라질 겁니다 사용자가 듣고자 하는 사실에 따라 말이죠 그래서 이를 단순히 하드코드를 할 수 없습니다 생생한 경험을 제공하기 위해 API

AI 에이전트에 웹 후크가 필요합니다 이건 웹 호스티드 엔드포인트가 될 겁니다 그리고 APIAI는 이를 주어진 인텐트를 위해 물을 수 있습니다 몇 가지 응답을 제공하기 위해 말이죠 여러분의 웹 후크는 https 엔드포인트 빌트여야 합니다 여러분이 선택한 어느 기계에서든지요 이는 새로운 APIAI 요청을 만들 때와 적절하게 형식화된 답변을 보낼 때 큰 역할을 할 겁니다 약간 복잡할 수 있는데요 그래서 저희는 Nodejs에 클라이언트 라이브러리를 만들었습니다 이를 사용해서 여러분의 비지니스 업무와 인터페이스가 가능합니다 그럼 이게 어떻게 Nodejs 웹 후크를 만드는데 사용되는지 한번 볼게요 이 앱을 위해서 말이죠 여기에 API

AI 앱 클래스을 초기화하는 클라우드 기능이 있습니다 클라이언트 라이브러리의 npm 패키지에서 보내진 것이죠 그리고 이를 한 쌍의 새로운 요청과 응답을 함께 초기화합니다 저희는 또한 맵을 알려줍니다 액션 맵이라고 하죠 그리고 이는 APIAI 콘솔에 입력된 액션 스트링이 기능 처리기에 맞추게 합니다 이런 경우, tellfact 액션을 매핑합니다 저희가 tellFact 기능 전에 콘솔에 적어둔 액션을 말이죠 그리고 이것은 APIAI 앱 오브젝트와 관련해 퍼지게 될 겁니다 액션 맵과 함께 apphandleRequest를 부르는 것은 응답을 API

AI에 보내는 업무를 작동하게 할 것입니다 tellFact 기능으로 몇 가지 흥미로운 것들을 할 수 있습니다 첫째, 팩트 스트링을 기본으로 초기화시켜 줍니다 그리곤 appget Argument 방법을 이용해서 fact-category 파라미터의 값을 도출해 냅니다 인텐트에서요 그 값에 기반해서 사용자에게 사실을 가져다 줍니다 그리고 사용자를 위한 답변을 형성하죠 사용된 답변은 사용자 기기의 서페이스 기능을 바탕으로 합니다 기기가 시각적 정보를 스크린에 휴대폰처럼 도출해낼 수 있다면 풍부한 응답들이 사용됩니다 그리고 이는 간단한 채팅 텍스트가 있는 카드와 이미지를 포함합니다 접근 가능성을 위한 대체 텍스트와 함께 말이죠 마지막으로 그 대답은 몇 가지 제안을 포함하고 있습니다 대화가 더 나아가기 위해서요 화면에 결과물을 도출할 수 없는 기기의 경우 음성 답변으로써 사용자에게 간단한 스트링이 사용됩니다 자 이제 우리의 웹 후크를 클라우드 기능으로서 지어봤습니다 그리고 Google 클라우드 기능처럼 호스팅 솔루션에 배치해 봤습니다 우린 이제 APIAI에 이것을 사용하게 하면 됩니다 그러기 위해서 Fullfillment로 가서 웹 아래에 있는 Enabled를 클릭하세요 후크 셋팅을 하고 웹 후크의 호스트 주소를 입력합니다 그리고 tellFact 인텐트로 다시 돌아갑니다 그리고 아래에 있는 Use Web Hook를 체크해 줍니다 이게 APIAI가 웹 후크로부터 제공된 답변을 사용할 수 있도록 합니다 여기에 입력된 것 대신에 말이죠 이 인텐트를 위해서요 다시 APIAI 시뮬레이터에서 인텐트를 시험해 볼 수 있습니다 근데 이번에는 User Says 섹션에서 주어진 문장을 사용하지 않을 겁니다 "Google의 과거에 대해 흥미로운 걸 말해봐" 라고 해보죠 그리고 즉시 이 간단한 답변을 얻게 됩니다 우리의 웹 후크에서 만들어진 것이죠 이 점이 API

AI의 가장 멋진 것들 중 하나이기도 하고요 기계 학습입니다, 저희가 제공한 문장에 따라 교육을 받는 거죠 또한 사용자들의 입력을 알아듣습니다 예시와 문자 그대로 일치하지 않더라도 말이죠 그리고 웹 후크를 부르고 답변을 제공합니다 꽤 깔끔하죠? 웹 후크에서 보낸 JSON 요청 또한 확인할 수 있습니다 여기요 이것을 분석하는 건 보통 꽤 어렵습니다 하지만 저희 클라이언트 라이브러리는 이를 쉽게 해주죠 우린 또한 APIAI 콘솔의 교육 섹션을 살펴볼 수 있습니다 입력이 우리의 인텐트와 일치하는지 확인하기 위해서 말이죠 심지어 실시간 정정도 가능합니다 인텐트와 엔티티가 잘 맞는지 말이죠 즉시 그 자리에서요 여기에서 작동이 잘 되는 게 있는데요 먼저 이 대화를 좀 더 보충하고 싶네요 예를 들어, 사용자는 혼란스러울지도 모릅니다 이 어시스턴트 앱으로 뭘 할 수 있는지에 대해서 말이죠 그렇기에 다음의 말을 받아들일 수 있는 도움 콘텐트를 만들어 보죠 "뭘 할 수 있니?" 아니면 "도움이 필요해" 같은 문장들이요 다시 한번 말씀드리지만 제가 여기에 제공하는 예시보다 더 많이 제공하는 걸 잊지 마세요 여기에 간단한 도움의 답변을 제공할 수 있습니다 사용자를 저희 tellFact 인텐트로 이끌기 위해서죠 "Google의 역사나 본사에 대해 다 이야기해 줄 수 있습니다 어떤 걸 알고 싶나요?" 이보다 더 좋은 옵션은 그냥 사용자에게 사실을 제공하는 겁니다 그들에게 대화의 기반을 마련해 주는 거죠 저는 여러분이 여러분 스스로 시도해 볼 것을 권장합니다 마지막으로 quit(마침)이라는 인텐트를 추가해 보겠습니다 그리고 이건 사용자가 대화에서 떠날 수 있도록 해줄 겁니다 이 인텐트를 작동하기 위해 사용자는 아마 이런 말을 해야할 겁니다 "이제 그만 됐어" 또는 "잘가" 그리고 여기에 친절한 답변을 제공할 수 있죠 "네, 다음에 만나요"와 같은 답변이요 또는 사용자가 다시 돌아오게 만들고 싶다면 이렇게 말하는 게 더 좋겠죠 "내일 또 만나요 새로운 정보로 기다리고 있을게요 다음에 봐요" 그리고 웹 후크가 매일 다른 사실을 제공하게 하는 거죠 이제 우린 아래에 있는 End Conversation을 살펴볼게요 APIAI가 대화를 여기에서 마칠 수 있도록요 이제 여기에 꽤 잘 작동되는 게 있는데요 Google 웹 시뮬레이터의 액션에서 이것을 시도해 보겠습니다 그리고 그 현상을 볼 겁니다 시각와 음성의 맥락에서 Google 어시스턴트와 어떻게 자동되는지 말이죠 먼저 통합 페이지로 가보겠습니다 그리고 Google 셋팅에 있는 액션을 클릭해 줍니다 그런 후 앱을 테스팅하기 위해 Test를 클릭해 줍니다 시험상 Google 콘솔의 액션으로 건너뛸 수도 있습니다 첫째로 "내 앱에 말해봐"라고 적용할 겁니다 그리고 간단한 문장을 시험해 볼 겁니다 "역사, 부탁해"처럼요 다음 인텐트를 작동하기 전에 시뮬레이티드된 기기에서 휴대폰으로 바꾸겠습니다 그런 후에 "Google 본사에 대해 알려줘"라고 말할 겁니다 작동하네요! 제대로된 시각적 응답을 받았네요 화면을 기반으로한 서페이스를 사용하고 있기 때문이죠 이게 작동할 수 없는 상황이라면 디버그 정보를 살펴볼 수 있습니다 오른쪽에 있고 데이터가 옮겨진 걸 볼 수 있습니다 어시스턴트 서버와 제 APIAI 에이전트 사이에서요 이제 이걸 제출하기 전에 좀 더 개발하고 싶은데요 더 나은 사용자 경험과 더 많은 콘텐트를 제공하기 위해서요 어떻게 하는지는 여러분이 다 찾을 수 있습니다 개발자 사이트의 Google에 대한 사실 샘플 fuller에 있죠 다하고 나서 APIAI로 돌아가 업데이트를 클릭합니다 그러면 액션 콘솔이 앱을 업데이트하도록 해줍니다 여기 제가 가지고 있는 거랑 같이 말이죠 저는 이제 몇 가지 정보를 제공할 수 있는데요 저희 앱과 콘솔에 관해서요 'Google에 대한 사실'이라고 이름을 표시할 겁니다 그러면 디렉터리에 이게 이름으로 나타나죠 여러분은 여러분의 앱에 독특한 호출 이름을 붙여야 한다는 걸 기억하세요 저희 문서에서 게재한 네이밍 정책에 걸맞은 이름으로요 마이크를 사용해서 Google에 대한 사실이라고 말함으로써 콘솔이 발음을 결정하는 데 도움을 줄 수 있습니다 여기에 앱에 대한 소개를 해보겠습니다 목소리를 선택하고 이 앱이 무엇을 하는지 확실한 설명을 제공해 볼게요 그러고나서 몇 가지 호출 샘플을 제공해 보겠습니다 저희 문서는 다양한 방법을 제시하고 있습니다 여기 보여지는 흔한 앱이 아닌 여러분의 앱을 적용시키기 위해서요 그치만 다른 호출이 없으니 기본으로 해보겠습니다 만약 다른 걸 추가할 때 꼭 테스트를 해보고 추가하세요 저희 검토자가 그것이 작동하는지에 대해 알려줄 겁니다 다음으로, 몇 장의 이미지를 제공할 겁니다 옵션 테스팅 지침서도 함께요 그리고 제 이메일과 링크를 제 프라이버시 정책에 제공할 겁니다 이 모든 게 채워지면 위로 올라가서 저장을 누릅니다 보통 저는 제 앱이 서페이스 기능을 요구하도록 합니다 그치만 여기에서 제 것은 모든 기기들과 작동될 겁니다 그래서 이렇게 기본으로 놔두면 이제 다 됐습니다 이제 제출하기 버튼을 누르면 됩니다 앱이 제출됐습니다, 이제 제출 상태를 여기에서 모니터링할 수 있습니다 이 때, 여러분의 앱은 리뷰 과정을 거치게 됩니다 그리고 이게 받아들여지면 어시스턴트 기기로 배치가 됩니다 어디서나요 승인이 되고 나면 그 앱은 누구에게나 사용 가능합니다 Google 홈에서 Google 어시스턴트를 사용하거나 다른 적합한 기기들에서 말이죠 승인 전에 항상 테스트 할 수 있다는 걸 기억하세요 여러분의 계발자 계정과 연결이 되있는 한 여러분의 기기와 함께 말이죠 그럼 이제 시험해보죠 좋아, Google 내 앱에 말해봐 Google 어시스턴트: 물론이죠 여기 나의 테스트 앱의 테스트 버전이 있습니다 Google에 대한 사실에 오신 걸 환영합니다 Google의 역사와 본사 중 어떤 것을 듣고 싶나요? 사칫 미슈라: 본사의 사실에 대해 말해줘 Google 어시스턴트: 여기 그 정보가 있습니다 Google은 본점에 15개의 구내 식당이 있습니다 다음으로 Google의 역사와 본사 중 어떤 것을 듣고 싶나요? 여기 그 정보가 있습니다 Google은 2008년 안드로이드 첫번째 버전을 출시했습니다 다음으로 Google의 역사와 본사 중 어떤 것을 듣고 싶나요? 사칫 미슈라: 이제 그만 됐어 Google 어시스턴트: 내일 새로운 정보로 기다리고 있을게요 다음에 봐요 사칫 미슈라: 이로써 아주 짧은 시범이었습니다 액션 콘솔과 API

AI 개발자 도구에서 가능한 몇 가지 엄청난 특징들에 대해서요 Google의 액션에 대해 더 궁금한 게 있다면 developersgooglecom/actions에서 콘솔을 확인하거나 자료들을 읽어보세요 그럼 더 완벽한 사실들을 찾을 수 있을 겁니다 Google 샘플과 자세한 설명에 대해서요 숫자 지니(geni) 샘플도 같이 말이죠 이는 디자인의 최상의 실행을 위한 훌륭한 참고 자료이기도 하죠 저희는 또한 Google G+ 커뮤니티의 액션을 가지고 있는데요 여러분은 여기에 질문을 하고 여러분의 생각을 모두와 공유할 수 있습니다 이상으로 사치 미슈라였습니다 이 영상을 봐주셔서 감사합니다 여러분이 무엇을 개발할지 정말 기대됩니다 [음악 재생중]